Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Neurocrit Care ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811514

RESUMO

BACKGROUND: Numerous trials have addressed intracranial pressure (ICP) management in neurocritical care. However, identifying its harmful thresholds and controlling ICP remain challenging in terms of improving outcomes. Evidence suggests that an individualized approach is necessary for establishing tolerance limits for ICP, incorporating factors such as ICP waveform (ICPW) or pulse morphology along with additional data provided by other invasive (e.g., brain oximetry) and noninvasive monitoring (NIM) methods (e.g., transcranial Doppler, optic nerve sheath diameter ultrasound, and pupillometry). This study aims to assess current ICP monitoring practices among experienced clinicians and explore whether guidelines should incorporate ancillary parameters from NIM and ICPW in future updates. METHODS: We conducted a survey among experienced professionals involved in researching and managing patients with severe injury across low-middle-income countries (LMICs) and high-income countries (HICs). We sought their insights on ICP monitoring, particularly focusing on the impact of NIM and ICPW in various clinical scenarios. RESULTS: From October to December 2023, 109 professionals from the Americas and Europe participated in the survey, evenly distributed between LMIC and HIC. When ICP ranged from 22 to 25 mm Hg, 62.3% of respondents were open to considering additional information, such as ICPW and other monitoring techniques, before adjusting therapy intensity levels. Moreover, 77% of respondents were inclined to reassess patients with ICP in the 18-22 mm Hg range, potentially escalating therapy intensity levels with the support of ICPW and NIM. Differences emerged between LMIC and HIC participants, with more LMIC respondents preferring arterial blood pressure transducer leveling at the heart and endorsing the use of NIM techniques and ICPW as ancillary information. CONCLUSIONS: Experienced clinicians tend to personalize ICP management, emphasizing the importance of considering various monitoring techniques. ICPW and noninvasive techniques, particularly in LMIC settings, warrant further exploration and could potentially enhance individualized patient care. The study suggests updating guidelines to include these additional components for a more personalized approach to ICP management.

2.
Resuscitation ; 188: 109823, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37164175

RESUMO

BACKGROUND: Patients resuscitated from cardiac arrest have variable severity of primary hypoxic ischemic brain injury (HIBI). Signatures of primary HIBI on brain imaging and electroencephalography (EEG) include diffuse cerebral edema and burst suppression with identical bursts (BSIB). We hypothesize distinct phenotypes of primary HIBI are associated with increasing cardiopulmonary resuscitation (CPR) duration. METHODS: We identified from our prospective registry of both in-and out-of-hospital CA patients treated between January 2010 to January 2020 for this cohort study. We abstracted CPR duration, neurological examination, initial brain computed tomography gray to white ratio (GWR), and initial EEG pattern. We considered four phenotypes on presentation: awake; comatose with neither BSIB nor cerebral edema (non-malignant coma); BSIB; and cerebral edema (GWR ≤ 1.20). BSIB and cerebral edema were considered as non-mutually exclusive outcomes. We generated predicted probabilities of brain injury phenotype using localized regression. RESULTS: We included 2,440 patients, of whom 545 (23%) were awake, 1,065 (44%) had non-malignant coma, 548 (23%) had BSIB and 438 (18%) had cerebral edema. Only 92 (4%) had both BSIB and edema. Median CPR duration was 16 [IQR 8-28] minutes. Median CPR duration increased in a stepwise manner across groups: awake 6 [3-13] minutes; non-malignant coma 15 [8-25] minutes; BSIB 21 [13-31] minutes; cerebral edema 32 [22-46] minutes. Predicted probability of phenotype changes over time. CONCLUSIONS: Brain injury phenotype is related to CPR duration, which is a surrogate for severity of HIBI. The sequence of most likely primary HIBI phenotype with progressively longer CPR duration is awake, coma without BSIB or edema, BSIB, and finally cerebral edema.


Assuntos
Edema Encefálico , Lesões Encefálicas , Reanimação Cardiopulmonar , Parada Cardíaca , Hipóxia-Isquemia Encefálica , Parada Cardíaca Extra-Hospitalar , Humanos , Reanimação Cardiopulmonar/efeitos adversos , Reanimação Cardiopulmonar/métodos , Estudos de Coortes , Edema Encefálico/etiologia , Coma/complicações , Parada Cardíaca/complicações , Hipóxia-Isquemia Encefálica/etiologia , Lesões Encefálicas/complicações , Parada Cardíaca Extra-Hospitalar/terapia
3.
BMJ Open ; 12(3): e060188, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273066

RESUMO

INTRODUCTION: Management of traumatic brain injury (TBI) includes invasive monitoring to prevent secondary brain injuries. Intracranial pressure (ICP) monitor is the main measurement used to that intent but cerebral hypoxia can occur despite normal ICP. This study will assess whether the addition of a brain tissue oxygenation (PbtO2) monitor prevents more secondary injuries that will translate into improved functional outcome. METHODS AND ANALYSIS: Multicentre, randomised, blinded-endpoint comparative effectiveness study enrolling 1094 patients with severe TBI monitored with both ICP and PbtO2. Patients will be randomised to medical management guided by ICP alone (treating team blinded to PbtO2 values) or both ICP and PbtO2. Management is protocolised according to international guidelines in a tiered approach fashion to maintain ICP <22 mm Hg and PbtO2 >20 mm Hg. ICP and PbtO2 will be continuously recorded for a minimum of 5 days. The primary outcome measure is the Glasgow Outcome Scale-Extended performed at 180 (±30) days by a blinded central examiner. Favourable outcome is defined according to a sliding dichotomy where the definition of favourable outcome varies according to baseline severity. Severity will be defined according to the probability of poor outcome predicted by the IMPACT core model. A large battery of secondary outcomes including granular neuropsychological and quality of life measures will be performed. ETHICS AND DISSEMINATION: This has been approved by Advarra Ethics Committee (Pro00030585). Results will be presented at scientific meetings and published in peer-reviewed publications. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov Registry (NCT03754114).


Assuntos
Lesões Encefálicas Traumáticas , Pressão Intracraniana , Encéfalo , Lesões Encefálicas Traumáticas/terapia , Humanos , Oxigênio , Qualidade de Vida
4.
Neurocrit Care ; 37(Suppl 1): 31-48, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35174446

RESUMO

BACKGROUND: Both seizures and spreading depolarizations (SDs) are commonly detected using electrocorticography (ECoG) after severe traumatic brain injury (TBI). A close relationship between seizures and SDs has been described, but the implications of detecting either or both remain unclear. We sought to characterize the relationship between these two phenomena and their clinical significance. METHODS: We performed a post hoc analysis of a prospective observational clinical study of patients with severe TBI requiring neurosurgery at five academic neurotrauma centers. A subdural electrode array was placed intraoperatively and ECoG was recorded during intensive care. SDs, seizures, and high-frequency background characteristics were quantified offline using published standards and terminology. The primary outcome was the Glasgow Outcome Scale-Extended score at 6 months post injury. RESULTS: There were 138 patients with valid ECoG recordings; the mean age was 47 ± 19 years, and 104 (75%) were men. Overall, 2,219 ECoG-detected seizures occurred in 38 of 138 (28%) patients in a bimodal pattern, with peak incidences at 1.7-1.8 days and 3.8-4.0 days post injury. Seizures detected on scalp electroencephalography (EEG) were diagnosed by standard clinical care in only 18 of 138 (13%). Of 15 patients with ECoG-detected seizures and contemporaneous scalp EEG, seven (47%) had no definite scalp EEG correlate. ECoG-detected seizures were significantly associated with the severity and number of SDs, which occurred in 83 of 138 (60%) of patients. Temporal interactions were observed in 17 of 24 (70.8%) patients with both ECoG-detected seizures and SDs. After controlling for known prognostic covariates and the presence of SDs, seizures detected on either ECoG or scalp EEG did not have an independent association with 6-month functional outcome but portended worse outcome among those with clustered or isoelectric SDs. CONCLUSIONS: In patients with severe TBI requiring neurosurgery, seizures were half as common as SDs. Seizures would have gone undetected without ECoG monitoring in 20% of patients. Although seizures alone did not influence 6-month functional outcomes in this cohort, they were independently associated with electrographic worsening and a lack of motor improvement following surgery. Temporal interactions between ECoG-detected seizures and SDs were common and held prognostic implications. Together, seizures and SDs may occur along a dynamic continuum of factors critical to the development of secondary brain injury. ECoG provides information integral to the clinical management of patients with TBI.


Assuntos
Lesões Encefálicas Traumáticas , Adulto , Idoso , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/cirurgia , Eletrocorticografia/efeitos adversos , Eletroencefalografia , Feminino , Escala de Resultado de Glasgow , Humanos , Masculino , Pessoa de Meia-Idade , Convulsões/diagnóstico , Convulsões/etiologia
5.
Neurol Clin Pract ; 11(1): 13-17, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33968467

RESUMO

OBJECTIVE: To determine whether telemedicine technology can be used to reliably determine the neurologic diagnosis of death (NDD) in patients with catastrophic brain injury (CBI). METHODS: We included a convenience sample of patients with CBI at a single academic medical center from November 2016 through June 2018. We simultaneously performed brain death evaluation at the bedside and remotely via telemedicine. Remote examiners were neurointensivists who were experienced and knowledgeable in the NDD. In addition to standard clinical examination, we used quantitative pupillometry to evaluate pupil size and reactivity. We determined the proportion of agreement for each NDD examination element and the overall diagnosis of brain death between bedside and remote examiners. RESULTS: Twenty-nine patients with mean age 46 ± 18 years underwent 30 paired NDD examinations. Twenty-eight (97%) patients met the NDD criteria and were pronounced dead. One patient did not meet the NDD criteria and died after withdrawal of life support. With the exception of qualitative assessment of pupillary reactivity, we observed excellent agreement (97%-100% across NDD examination elements) between bedside and remote examiners and 97% agreement on the overall diagnosis of brain death. Unlike qualitative pupillary assessment, quantitative pupillometry was consistently interpretable by remote examiners. CONCLUSIONS: Our results suggest that remote telemedicine technology can be used to verify the findings of bedside examiners performing NDD examinations when a pupillometer is used to assess pupillary reactivity. When performed by neurocritical care experts, the telemedicine NDD examination has potential to facilitate timely and accurate certification of brain death in patients with CBI. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence on the concordance of neurologic diagnosis of death by telemedicine and bedside examiners.

6.
Curr Opin Crit Care ; 27(2): 95-102, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33560016

RESUMO

PURPOSE OF REVIEW: Each year in the United States there are over 2.5 million visits to emergency departments for traumatic brain injury (TBI), 300,000 hospitalizations, and 50,000 deaths. TBI initiates a complex cascade of events which can lead to significant secondary brain damage. Great interest exists in directly measuring cerebral oxygen delivery and demand after TBI to prevent this secondary injury. Several invasive, catheter-based devices are now available which directly monitor the partial pressure of oxygen in brain tissue (PbtO2), yet significant equipoise exists regarding their clinical use in severe TBI. RECENT FINDINGS: There are currently three ongoing multicenter randomized controlled trials studying the use of PbtO2 monitoring in severe TBI: BOOST-3, OXY-TC, and BONANZA. All three have similar inclusion/exclusion criteria, treatment protocols, and outcome measures. Despite mixed existing evidence, use of PbtO2 is already making its way into new TBI guidelines such as the recent Seattle International Brain Injury Consensus Conference. Analysis of high-fidelity data from multimodal monitoring, however, suggests that PbtO2 may only be one piece of the puzzle in severe TBI. SUMMARY: While current evidence regarding the use of PbtO2 remains mixed, three ongoing clinical trials are expected to definitively answer the question of what role PbtO2 monitoring plays in severe TBI.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Encéfalo , Lesões Encefálicas/terapia , Lesões Encefálicas Traumáticas/terapia , Catéteres , Humanos , Estudos Multicêntricos como Assunto , Oxigênio
7.
Neurocrit Care ; 34(3): 781-794, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32886294

RESUMO

BACKGROUND: Despite increasing use in hemorrhagic shock (HS), whole blood (WB) resuscitation for polytrauma with traumatic brain injury (TBI) is largely unexplored. Current TBI guidelines recommend crystalloid for prehospital resuscitation. Although WB outperforms lactated Ringer's (LR) in increasing mean arterial pressure (MAP) in TBI + HS models, effects on brain tissue oxygenation (PbtO2), and optimal MAP remain undefined. METHODS: C57BL/6 mice (n = 72) underwent controlled cortical impact followed by HS (MAP = 25-27 mmHg). Ipsilateral hippocampal PbtO2 (n = 40) was measured by microelectrode. Mice were assigned to four groups (n = 18/group) for "prehospital" resuscitation (90 min) with LR or autologous WB, and target MAPs of 60 or 70 mmHg (LR60, WB60, LR70, WB70). Additional LR (10 ml/kg) was bolused every 5 min for MAP below target. RESULTS: LR requirements in WB60 (7.2 ± 5.0 mL/kg) and WB70 (28.3 ± 9.6 mL/kg) were markedly lower than in LR60 (132.8 ± 5.8 mL/kg) or LR70 (152.2 ± 4.8 mL/kg; all p < 0.001). WB70 MAP (72.5 ± 2.9 mmHg) was higher than LR70 (59.8 ± 4.0 mmHg, p < 0.001). WB60 MAP (68.7 ± 4.6 mmHg) was higher than LR60 (53.5 ± 3.2 mmHg, p < 0.001). PbtO2 was higher in WB60 (43.8 ± 11.6 mmHg) vs either LR60 (25.9 ± 13.0 mmHg, p = 0.04) or LR70 (24.1 ± 8.1 mmHg, p = 0.001). PbtO2 in WB70 (40.7 ± 8.8 mmHg) was higher than in LR70 (p = 0.007). Despite higher MAP in WB70 vs WB60 (p = .002), PbtO2 was similar. CONCLUSION: WB resuscitation after TBI + HS results in robust improvements in brain oxygenation while minimizing fluid volume when compared to standard LR resuscitation. WB resuscitation may allow for a lower prehospital MAP without compromising brain oxygenation when compared to LR resuscitation. Further studies evaluating the effects of these physiologic benefits on outcome after TBI with HS are warranted, to eventually inform clinical trials.


Assuntos
Lesões Encefálicas Traumáticas , Choque Hemorrágico , Animais , Lesões Encefálicas Traumáticas/terapia , Modelos Animais de Doenças , Soluções Isotônicas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Ressuscitação , Lactato de Ringer , Choque Hemorrágico/terapia
8.
JAMA Neurol ; 77(4): 489-499, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31886870

RESUMO

Importance: Advances in treatment of traumatic brain injury are hindered by the inability to monitor pathological mechanisms in individual patients for targeted neuroprotective treatment. Spreading depolarizations, a mechanism of lesion development in animal models, are a novel candidate for clinical monitoring in patients with brain trauma who need surgery. Objective: To test the null hypothesis that spreading depolarizations are not associated with worse neurologic outcomes. Design, Setting, and Participants: This prospective, observational, multicenter cohort study was conducted from February 2009 to August 2013 in 5 level 1 trauma centers. Consecutive patients who required neurological surgery for treatment of acute brain trauma and for whom research consent could be obtained were enrolled; participants were excluded because of technical problems in data quality, patient withdrawal, or loss to follow-up. Primary statistical analysis took place from April to December 2018. Evaluators of outcome assessments were blinded to other measures. Interventions: A 6-contact electrode strip was placed on the brain surface during surgery for continuous electrocorticography during intensive care. Main Outcomes and Measures: Electrocorticography was scored for depolarizations, following international consensus procedures. Six-month outcomes were assessed by the Glasgow Outcome Scale-Extended score. Results: A total of 157 patients were initially enrolled; 19 were subsequently excluded. The 138 remaining patients (104 men [75%]; median [interquartile range] age, 45 [29-64] years) underwent a median (interquartile range) of 75.5 (42.2-117.1) hours of electrocorticography. A total of 2837 spreading depolarizations occurred in 83 of 138 patients (60.1% incidence) who, compared with patients who did not have spreading depolarizations, had lower prehospital systolic blood pressure levels (mean [SD], 133 [31] mm Hg vs 146 [33] mm Hg; P = .03), more traumatic subarachnoid hemorrhage (depolarization incidences of 17 of 37 [46%], 18 of 32 [56%], 22 of 33 [67%], and 23 of 30 patients [77%] for Morris-Marshall Grades 0, 1, 2, and 3/4, respectively; P = .047), and worse radiographic pathology (in 38 of 73 patients [52%] and 42 of 60 patients [70%] for Rotterdam Scores 2-4 vs 5-6, respectively; P = .04). Of patients with depolarizations, 32 of 83 (39%) had only sporadic events that induced cortical spreading depression of spontaneous electrical activity, whereas 51 of 83 patients (61%) exhibited temporal clusters of depolarizations (≥3 in a 2-hour span). Nearly half of those with clusters (23 of 51 [45%]) also had depolarizations in an electrically silent area of the cortex (isoelectric spreading depolarization). Patients with clusters did not improve in motor neurologic examinations from presurgery to postelectrocorticography, while other patients did improve. In multivariate ordinal regression adjusting for baseline prognostic variables, the occurrence of depolarization clusters had an odds ratio of 2.29 (95% CI, 1.13-4.65; P = .02) for worse outcomes. Conclusions and Relevance: In this cohort study of patients with acute brain trauma, spreading depolarizations were predominant but heterogeneous and independently associated with poor neurologic recovery. Monitoring the occurrence of spreading depolarizations may identify patients most likely to benefit from targeted management strategies.


Assuntos
Potenciais de Ação/fisiologia , Lesões Encefálicas Traumáticas/diagnóstico , Encéfalo/fisiopatologia , Adulto , Idoso , Lesões Encefálicas Traumáticas/fisiopatologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Eletrocorticografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos
9.
J Neurotrauma ; 37(22): 2353-2371, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30520681

RESUMO

New neuroprotective therapies for severe traumatic brain injury (TBI) have not translated from pre-clinical to clinical success. Numerous explanations have been suggested in both the pre-clinical and clinical arenas. Coverage of TBI in the lay press has reinvigorated interest, creating a golden age of TBI research with innovative strategies to circumvent roadblocks. We discuss the need for more robust therapies. We present concepts for traditional and novel approaches to defining therapeutic targets. We review lessons learned from the ongoing work of the pre-clinical drug and biomarker screening consortium Operation Brain Trauma Therapy and suggest ways to further enhance pre-clinical consortia. Biomarkers have emerged that empower choice and assessment of target engagement by candidate therapies. Drug combinations may be needed, and it may require moving beyond conventional drug therapies. Precision medicine may also link the right therapy to the right patient, including new approaches to TBI classification beyond the Glasgow Coma Scale or anatomical phenotyping-incorporating new genetic and physiologic approaches. Therapeutic breakthroughs may also come from alternative approaches in clinical investigation (comparative effectiveness, adaptive trial design, use of the electronic medical record, and big data). The full continuum of care must also be represented in translational studies, given the important clinical role of pre-hospital events, extracerebral insults in the intensive care unit, and rehabilitation. TBI research from concussion to coma can cross-pollinate and further advancement of new therapies. Misconceptions can stifle/misdirect TBI research and deserve special attention. Finally, we synthesize an approach to deliver therapeutic breakthroughs in this golden age of TBI research.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Pesquisa Translacional Biomédica , Animais , Humanos , Fármacos Neuroprotetores/farmacologia
10.
Neurocrit Care ; 30(3): 557-568, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30972614

RESUMO

BACKGROUND: Spreading depolarizations (SDs) occur in 50-60% of patients after surgical treatment of severe traumatic brain injury (TBI) and are independently associated with unfavorable outcomes. Here we performed a pilot study to examine the relationship between SDs and various types of intracranial lesions, progression of parenchymal damage, and outcomes. METHODS: In a multicenter study, fifty patients (76% male; median age 40) were monitored for SD by continuous electrocorticography (ECoG; median duration 79 h) following surgical treatment of severe TBI. Volumes of hemorrhage and parenchymal damage were estimated using unbiased stereologic assessment of preoperative, postoperative, and post-ECoG serial computed tomography (CT) studies. Neurologic outcomes were assessed at 6 months by the Glasgow Outcome Scale-Extended. RESULTS: Preoperative volumes of subdural and subarachnoid hemorrhage, but not parenchymal damage, were significantly associated with the occurrence of SDs (P's < 0.05). Parenchymal damage increased significantly (median 34 ml [Interquartile range (IQR) - 2, 74]) over 7 (5, 8) days from preoperative to post-ECoG CT studies. Patients with and without SDs did not differ in extent of parenchymal damage increase [47 ml (3, 101) vs. 30 ml (- 2, 50), P = 0.27], but those exhibiting the isoelectric subtype of SDs had greater initial parenchymal damage and greater increases than other patients (P's < 0.05). Patients with temporal clusters of SDs (≥ 3 in 2 h; n = 10 patients), which included those with isoelectric SDs, had worse outcomes than those without clusters (P = 0.03), and parenchymal damage expansion also correlated with worse outcomes (P = 0.01). In multivariate regression with imputation, both clusters and lesion expansion were significant outcome predictors. CONCLUSIONS: These results suggest that subarachnoid and subdural blood are important primary injury factors in provoking SDs and that clustered SDs and parenchymal lesion expansion contribute independently to worse patient outcomes. These results warrant future prospective studies using detailed quantification of TBI lesion types to better understand the relationship between anatomic and physiologic measures of secondary injury.


Assuntos
Contusão Encefálica/patologia , Contusão Encefálica/fisiopatologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Hematoma Subdural Agudo/patologia , Hematoma Subdural Agudo/fisiopatologia , Hemorragia Subaracnoídea Traumática/patologia , Hemorragia Subaracnoídea Traumática/fisiopatologia , Adulto , Contusão Encefálica/diagnóstico por imagem , Eletrocorticografia , Feminino , Seguimentos , Escala de Resultado de Glasgow , Hematoma Subdural Agudo/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Índice de Gravidade de Doença , Hemorragia Subaracnoídea Traumática/diagnóstico por imagem , Tomografia Computadorizada por Raios X
11.
J Neurotrauma ; 36(11): 1804-1817, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30484364

RESUMO

Sulfonylurea-receptor-1(SUR1) and its associated transient-receptor-potential cation channel subfamily-M (TRPM4) channel are key contributors to cerebral edema and intracranial hypertension in traumatic brain injury (TBI) and other neurological disorders. Channel inhibition by glyburide is clinically promising. ABCC8 (encoding SUR1) single-nucleotide polymorphisms (SNPs) are reported as predictors of raised intracranial pressure (ICP). This project evaluated whether TRPM4 SNPs predicted ICP and TBI outcome. DNA was extracted from 435 consecutively enrolled severe TBI patients. Without a priori selection, all 11 TRPM4 SNPs available on the multiplex platform (Illumina:Human-Core-Exome v1.0) were genotyped spanning the 25 exon gene. A total of 385 patients were analyzed after quality control. Outcomes included ICP and 6 month Glasgow Outcome Scale (GOS) score. Proxy SNPs, spatial modeling, and functional predictions were determined using established software programs. rs8104571 (intron-20) and rs150391806 (exon-24) were predictors of ICP. rs8104571 heterozygotes predicted higher average ICP (ß = 10.3 mm Hg, p = 0.00000029), peak ICP (ß = 19.6 mm Hg, p = 0.0007), and proportion ICP >25 mm Hg (ß = 0.16 p = 0.004). rs150391806 heterozygotes had higher mean (ß = 7.2 mm Hg, p = 0.042) and peak (ß = 28.9 mm Hg, p = 0.0015) ICPs. rs8104571, rs150391806, and 34 associated proxy SNPs in linkage-disequilibrium clustered downstream. This region encodes TRPM4's channel pore and a region postulated to juxtapose SUR1 sequences encoded by an ABCC8 DNA segment containing previously identified relevant SNPs. There was an interaction effect on ICP between rs8104571 and a cluster of predictive ABCC8 SNPs (rs2237982, rs2283261, rs11024286). Although not significant in univariable or a basic multivariable model, in an expanded model additionally accounting for injury pattern, computed tomographic (CT) appearance, and intracranial hypertension, heterozygous rs8104571 was associated with favorable 6 month GOS (odds ratio [OR] = 16.7, p = 0.007951). This trend persisted in a survivor-only subcohort (OR = 20.67, p = 0.0168). In this cohort, two TRPM4 SNPs predicted increased ICP with large effect sizes. Both clustered downstream, spanning a region encoding the channel pore and interacting with SUR1. If validated, this may guide risk stratification and eventually inform treatment-responder classification for SUR1-TRPM4 inhibition in TBI. Larger studies are warranted.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Hipertensão Intracraniana/genética , Receptores de Sulfonilureias/genética , Canais de Cátion TRPM/genética , Adolescente , Adulto , Idoso , Edema Encefálico/genética , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Adulto Jovem
12.
Crit Care Med ; 46(11): 1792-1802, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30119071

RESUMO

OBJECTIVES: Intracranial pressure in traumatic brain injury is dynamic and influenced by factors like injury patterns, treatments, and genetics. Existing studies use time invariant summary intracranial pressure measures thus potentially losing critical information about temporal trends. We identified longitudinal intracranial pressure trajectories in severe traumatic brain injury and evaluated whether they predicted outcome. We further interrogated the model to explore whether ABCC8 polymorphisms (a known cerebraledema regulator) differed across trajectory groups. DESIGN: Prospective observational cohort. SETTING: Single-center academic medical center. PATIENTS: Four-hundred four severe traumatic brain injury patients. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We used group-based trajectory modeling to identify hourly intracranial pressure trajectories in days 0-5 post traumatic brain injury incorporating risk factor adjustment (age, sex, Glasgow Coma Scale 6score, craniectomy, primary hemorrhage pattern). We compared 6-month outcomes (Glasgow Outcome Scale, Disability Rating Scale, mortality) and ABCC8 tag-single-nucleotide polymorphisms associated with cerebral edema (rs2237982, rs7105832) across groups. Regression models determined whether trajectory groups predicted outcome. A six trajectory group model best fit the data, identifying cohorts differing in initial intracranial pressure, evolution, and number/proportion of spikes greater than 20 mm Hg. There were pattern differences in age, hemorrhage type, and craniectomy rates. ABCC8 polymorphisms differed across groups. GOS (p = 0.006), Disability Rating Scale (p = 0.001), mortality (p < 0.0001), and rs2237982 (p = 0.035) differed across groups. Unfavorable outcomes were surprisingly predicted by both low intracranial pressure trajectories and sustained intracranial hypertension. Intracranial pressure variability differed across groups (p < 0.001) and may reflect preserved/impaired intracranial elastance/compliance. CONCLUSIONS: We employed a novel approach investigating longitudinal/dynamic intracranial pressure patterns in traumatic brain injury. In a risk adjusted model, six groups were identified and predicted outcomes. If validated, trajectory modeling may be a first step toward developing a new, granular approach for intracranial pressure phenotyping in conjunction with other phenotyping tools like biomarkers and neuroimaging. This may be particularly relevant in light of changing traumatic brain injury demographics toward the elderly.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/genética , Hipertensão Intracraniana/etiologia , Hipertensão Intracraniana/genética , Pressão Intracraniana/genética , Receptores de Sulfonilureias/genética , Adulto , Idoso , Lesões Encefálicas Traumáticas/mortalidade , Feminino , Humanos , Hipertensão Intracraniana/mortalidade , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Fatores de Risco , Índice de Gravidade de Doença
13.
Neurology ; 90(24): 1117-1122, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29891575

RESUMO

OBJECTIVE: To define expectations for neurocritical care (NCC) core competencies vs competencies considered within the domain of other subspecialists. METHODS: An electronic survey was disseminated nationally to NCC nurses, physicians, fellows, and neurology residents through Accreditation Council for Graduate Medical Education neurology residency program directors, United Council for Neurologic Subspecialties neurocritical care fellowship program directors, and members of the Neurocritical Care Society. RESULTS: A total of 268 neurocritical care providers and neurology residents from 30 institutions responded. Overall, >90% supported NCC graduates independently interpreting and managing systemic and cerebral hemodynamic data, or performing brain death determination, neurovascular ultrasound, vascular access, and airway management. Over 75% endorsed that NCC graduates should independently interpret EEG and perform bronchoscopies. Fewer but substantial respondents supported graduates being independent performing intracranial bolt (45.8%), ventriculostomy (39.0%), tracheostomy (39.8%), or gastrostomy (19.1%) procedures. Trainees differed from physicians and program directors, respectively, by advocating independence in EEG interpretation (92.8%, 61.8%, and 65.3%) and PEG placement (29.3%, 9.1%, and 8.5%). CONCLUSIONS: Broad support exists across NCC role groups for wide-ranging NCC competencies including skills often performed by other neurology and non-neurology subspecialties. Variations highlight natural divergences in expectations among trainee, physician, and nurse role groups. These results establish expectations for core competencies within NCC and initiate dialogue across subspecialties about best practice standards for the spectrum of critically ill patients requiring neurologic care.


Assuntos
Cuidados Críticos/normas , Ocupações em Saúde/educação , Neurologia/educação , Competência Clínica , Educação Médica/normas , Humanos , Neurologia/normas , Inquéritos e Questionários
14.
Resuscitation ; 129: 121-126, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29679696

RESUMO

INTRODUCTION: Brain tissue hypoxia may contribute to preventable secondary brain injury after cardiac arrest. We developed a porcine model of opioid overdose cardiac arrest and post-arrest care including invasive, multimodal neurological monitoring of regional brain physiology. We hypothesized brain tissue hypoxia is common with usual post-arrest care and can be prevented by modifying mean arterial pressure (MAP) and arterial oxygen concentration (PaO2). METHODS: We induced opioid overdose and cardiac arrest in sixteen swine, attempted resuscitation after 9 min of apnea, and randomized resuscitated animals to three alternating 6-h blocks of standard or titrated care. We invasively monitored physiological parameters including brain tissue oxygen (PbtO2). During standard care blocks, we maintained MAP > 65 mmHg and oxygen saturation 94-98%. During titrated care, we targeted PbtO2 > 20 mmHg. RESULTS: Overall, 10 animals (63%) achieved ROSC after a median of 12.4 min (range 10.8-21.5 min). PbtO2 was higher during titrated care than standard care blocks (unadjusted ß = 0.60, 95% confidence interval (CI) 0.42-0.78, P < 0.001). In an adjusted model controlling for MAP, vasopressors, sedation, and block sequence, PbtO2 remained higher during titrated care (adjusted ß = 0.75, 95%CI 0.43-1.06, P < 0.001). At three predetermined thresholds, brain tissue hypoxia was significantly less common during titrated care blocks (44 vs 2% of the block duration spent below 20 mmHg, P < 0.001; 21 vs 0% below 15 mmHg, P < 0.001; and, 7 vs 0% below 10 mmHg, P = .01). CONCLUSIONS: In this model of opioid overdose cardiac arrest, brain tissue hypoxia is common and treatable. Further work will elucidate best strategies and impact of titrated care on functional outcomes.


Assuntos
Analgésicos Opioides , Isquemia Encefálica , Reanimação Cardiopulmonar , Circulação Cerebrovascular , Overdose de Drogas , Parada Cardíaca , Monitorização Fisiológica , Animais , Feminino , Analgésicos Opioides/toxicidade , Isquemia Encefálica/etiologia , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/terapia , Reanimação Cardiopulmonar/métodos , Circulação Cerebrovascular/fisiologia , Estudos Cross-Over , Modelos Animais de Doenças , Overdose de Drogas/complicações , Overdose de Drogas/fisiopatologia , Parada Cardíaca/induzido quimicamente , Parada Cardíaca/fisiopatologia , Parada Cardíaca/terapia , Monitorização Fisiológica/métodos , Estudos Prospectivos , Distribuição Aleatória , Suínos
15.
J Neurol Neurosurg Psychiatry ; 89(11): 1152-1162, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29674479

RESUMO

OBJECTIVE: ABCC8 encodes sulfonylurea receptor 1, a key regulatory protein of cerebral oedema in many neurological disorders including traumatic brain injury (TBI). Sulfonylurea-receptor-1 inhibition has been promising in ameliorating cerebral oedema in clinical trials. We evaluated whether ABCC8 tag single-nucleotide polymorphisms predicted oedema and outcome in TBI. METHODS: DNA was extracted from 485 prospectively enrolled patients with severe TBI. 410 were analysed after quality control. ABCC8 tag single-nucleotide polymorphisms (SNPs) were identified (Hapmap, r2>0.8, minor-allele frequency >0.20) and sequenced (iPlex-Gold, MassArray). Outcomes included radiographic oedema, intracranial pressure (ICP) and 3-month Glasgow Outcome Scale (GOS) score. Proxy SNPs, spatial modelling, amino acid topology and functional predictions were determined using established software programs. RESULTS: Wild-type rs7105832 and rs2237982 alleles and genotypes were associated with lower average ICP (ß=-2.91, p=0.001; ß=-2.28, p=0.003) and decreased radiographic oedema (OR 0.42, p=0.012; OR 0.52, p=0.017). Wild-type rs2237982 also increased favourable 3-month GOS (OR 2.45, p=0.006); this was partially mediated by oedema (p=0.03). Different polymorphisms predicted 3-month outcome: variant rs11024286 increased (OR 1.84, p=0.006) and wild-type rs4148622 decreased (OR 0.40, p=0.01) the odds of favourable outcome. Significant tag and concordant proxy SNPs regionally span introns/exons 2-15 of the 39-exon gene. CONCLUSIONS: This study identifies four ABCC8 tag SNPs associated with cerebral oedema and/or outcome in TBI, tagging a region including 33 polymorphisms. In polymorphisms predictive of oedema, variant alleles/genotypes confer increased risk. Different variant polymorphisms were associated with favourable outcome, potentially suggesting distinct mechanisms. Significant polymorphisms spatially clustered flanking exons encoding the sulfonylurea receptor site and transmembrane domain 0/loop 0 (juxtaposing the channel pore/binding site). This, if validated, may help build a foundation for developing future strategies that may guide individualised care, treatment response, prognosis and patient selection for clinical trials.


Assuntos
Edema Encefálico/etiologia , Lesões Encefálicas Traumáticas/genética , Polimorfismo de Nucleotídeo Único , Receptores de Sulfonilureias/genética , Adolescente , Adulto , Idoso , Alelos , Edema Encefálico/genética , Lesões Encefálicas Traumáticas/complicações , Feminino , Frequência do Gene , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Recuperação de Função Fisiológica , Adulto Jovem
16.
Neurocrit Care ; 28(3): 353-361, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29327152

RESUMO

BACKGROUND: Status epilepticus (SE) has been identified as a predictor of morbidity and mortality in many acute brain injury patient populations. We aimed to assess the prevalence and impact of SE after intracerebral hemorrhage (ICH) in a large patient sample to overcome limitations in previous small patient sample studies. METHODS: We queried the Nationwide Inpatient Sample for patients admitted for ICH from 1999 to 2011, excluding patients with other acute brain injuries. Patients were stratified into SE diagnosis and no SE diagnosis cohorts. We identified independent risk factors for SE and assessed the impact of SE on morbidity and mortality with multivariable logistic regression models. Logistic regression was used to evaluate the trend in SE diagnoses over time as well. RESULTS: SE was associated with significantly increased odds of both mortality and morbidity (odds ratios (OR) 1.18 [confidence intervals (CI) 1.01-1.39], and OR 1.53 [CI 1.22-1.91], respectively). Risk factors for SE included female sex (OR 1.17 [CI 1.01-1.35]), categorical van Walraven score (vWr 5-14: OR 1.68 [CI 1.41-2.01]; vWr > 14: OR 3.77 [CI 2.98-4.76]), sepsis (OR 2.06 [CI 1.58-2.68]), and encephalopathy (OR 3.14 [CI 2.49-3.96]). Age was found to be associated with reduced odds of SE (OR 0.97 [CI 0.97-0.97]). From 1999 to 2011, prevalence of SE diagnosis increased from 0.25 to 0.61% (p < 0.001). Factors associated with SE were female sex, medium and high risk vWr score, sepsis, and encephalopathy. Independent predictors associated with increased mortality from SE were increased age, pneumonia, myocardial infarction, cardiac arrest, and sepsis. CONCLUSIONS: SE is a significant, likely underdiagnosed, predictor of morbidity and mortality after ICH. Future studies are necessary to better identify which patients are at highest risk of SE to guide resource utilization.


Assuntos
Hemorragia Cerebral/epidemiologia , Estado Epiléptico/epidemiologia , Fatores Etários , Idoso , Hemorragia Cerebral/complicações , Hemorragia Cerebral/mortalidade , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , Índice de Gravidade de Doença , Fatores Sexuais , Estado Epiléptico/etiologia , Estado Epiléptico/mortalidade , Estados Unidos/epidemiologia
17.
World Neurosurg ; 112: e385-e392, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29355799

RESUMO

OBJECTIVE: Spontaneous intracerebral hemorrhage (ICH) is one of the most frequent causes of epilepsy in the United States. However, reported risk factors for seizure after are inconsistent, and their impact on inpatient morbidity and mortality is unclear. We aimed to study the incidence, risk factors, and impact of seizures after ICH in a nationwide patient sample. METHODS: We queried the Nationwide Inpatient Sample for patients admitted to the hospital with a primary diagnosis of ICH between the years 1999 and 2011. Patients were subsequently dichotomized into groups of those with a diagnosis consistent with seizure and those without. Multivariate logistic regression was used to assess risk factors for seizure in this patient sample, and the association between seizures and mortality and morbidity. Logistic regression was then used for trend analysis of incidence of seizure diagnoses over time. RESULTS: We identified 220,075 patients admitted with a primary diagnosis of ICH. Of these, 11.87% had a diagnosis consistent with seizure. Factors associated with increased risk of seizure after ICH included higher categorical van Walraven score, encephalopathy, alcohol abuse, solid tumor, and prior stroke. Seizure was independently associated with decreased odds of morbidity (odds ratio [OR], 0.89; 95% confidence interval [CI], 0.86-0.92) and mortality (OR, 0.75; 95% CI, 0.72-0.77) in multivariate models controlling for existing comorbidities. CONCLUSIONS: Seizures after were associated with decreased mortality and morbidity despite attempts to correct for existing comorbidities. Continuous monitoring of these patients for seizures may not be necessary in all circumstances, despite their frequency.


Assuntos
Hemorragia Cerebral/complicações , Convulsões/epidemiologia , Convulsões/etiologia , Idoso , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Prognóstico , Sistema de Registros , Fatores de Risco , Convulsões/mortalidade , Taxa de Sobrevida , Estados Unidos/epidemiologia
18.
Crit Care Med ; 45(11): 1907-1914, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29028696

RESUMO

OBJECTIVES: A relationship between reduced brain tissue oxygenation and poor outcome following severe traumatic brain injury has been reported in observational studies. We designed a Phase II trial to assess whether a neurocritical care management protocol could improve brain tissue oxygenation levels in patients with severe traumatic brain injury and the feasibility of a Phase III efficacy study. DESIGN: Randomized prospective clinical trial. SETTING: Ten ICUs in the United States. PATIENTS: One hundred nineteen severe traumatic brain injury patients. INTERVENTIONS: Patients were randomized to treatment protocol based on intracranial pressure plus brain tissue oxygenation monitoring versus intracranial pressure monitoring alone. Brain tissue oxygenation data were recorded in the intracranial pressure -only group in blinded fashion. Tiered interventions in each arm were specified and impact on intracranial pressure and brain tissue oxygenation measured. Monitors were removed if values were normal for 48 hours consecutively, or after 5 days. Outcome was measured at 6 months using the Glasgow Outcome Scale-Extended. MEASUREMENTS AND MAIN RESULTS: A management protocol based on brain tissue oxygenation and intracranial pressure monitoring reduced the proportion of time with brain tissue hypoxia after severe traumatic brain injury (0.45 in intracranial pressure-only group and 0.16 in intracranial pressure plus brain tissue oxygenation group; p < 0.0001). Intracranial pressure control was similar in both groups. Safety and feasibility of the tiered treatment protocol were confirmed. There were no procedure-related complications. Treatment of secondary injury after severe traumatic brain injury based on brain tissue oxygenation and intracranial pressure values was consistent with reduced mortality and increased proportions of patients with good recovery compared with intracranial pressure-only management; however, the study was not powered for clinical efficacy. CONCLUSIONS: Management of severe traumatic brain injury informed by multimodal intracranial pressure and brain tissue oxygenation monitoring reduced brain tissue hypoxia with a trend toward lower mortality and more favorable outcomes than intracranial pressure-only treatment. A Phase III randomized trial to assess impact on neurologic outcome of intracranial pressure plus brain tissue oxygenation-directed treatment of severe traumatic brain injury is warranted.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Encéfalo/fisiopatologia , Pressão Intracraniana/fisiologia , Oxigênio/metabolismo , Adulto , Feminino , Escala de Coma de Glasgow , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica , Estudos Prospectivos , Método Simples-Cego
19.
Neurocrit Care ; 26(2): 213-224, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27677908

RESUMO

OBJECTIVE: Cerebral edema (CE) in traumatic brain injury (TBI) is the consequence of multiple underlying mechanisms and is associated with unfavorable outcomes. Genetic variability in these pathways likely explains some of the clinical heterogeneity observed in edema development. A role for sulfonylurea receptor-1 (Sur1) in CE is supported. However, there are no prior studies examining the effect of genetic variability in the Sur1 gene (ABCC8) on the development of CE. We hypothesize that ABCC8 single nucleotide polymorphisms (SNPs) are predictive of CE. METHODS: DNA was extracted from 385 patients. SNPs in ABCC8 were genotyped using the Human Core Exome v1.2 (Illumina). CE measurements included acute CT edema, mean and peak intracranial pressure (ICP), and need for decompressive craniotomy. RESULTS: Fourteen SNPs with minor allele frequency >0.2 were identified. Four SNPS rs2283261, rs3819521, rs2283258, and rs1799857 were associated with CE measures. In multiple regression models, homozygote-variant genotypes in rs2283261, rs3819521, and rs2283258 had increased odds of CT edema (OR 2.45, p = 0.007; OR 2.95, p = 0.025; OR 3.00, p = 0.013), had higher mean (ß = 3.13, p = 0.000; ß = 2.95, p = 0.005; ß = 3.20, p = 0.008), and peak ICP (ß = 8.00, p = 0.001; ß = 7.64, p = 0.007; ß = 6.89, p = 0.034). The homozygote wild-type genotype of rs1799857 had decreased odds of decompressive craniotomy (OR 0.47, p = 0.004). CONCLUSIONS: This is the first report assessing the impact of ABCC8 genetic variability on CE development in TBI. Minor allele ABCC8 SNP genotypes had increased risk of CE, while major SNP alleles were protective-potentially suggesting an evolutionary advantage. These findings could guide risk stratification, treatment responders, and the development of novel targeted or gene-based therapies against CE in TBI and other neurological disorders.


Assuntos
Edema Encefálico/genética , Lesões Encefálicas Traumáticas/genética , Índice de Gravidade de Doença , Receptores de Sulfonilureias/genética , Adolescente , Adulto , Idoso , Edema Encefálico/etiologia , Lesões Encefálicas Traumáticas/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores de Proteção , Fatores de Risco , Adulto Jovem
20.
Crit Care Med ; 45(3): e255-e264, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27845954

RESUMO

OBJECTIVES: Cerebral edema is a key poor prognosticator in traumatic brain injury. There are no biomarkers identifying patients at-risk, or guiding mechanistically-precise therapies. Sulfonylurea receptor-1-transient receptor potential cation channel M4 is upregulated only after brain injury, causing edema in animal studies. We hypothesized that sulfonylurea receptor-1 is measurable in human cerebrospinal fluid after severe traumatic brain injury and is an informative biomarker of edema and outcome. DESIGN: A total of 119 cerebrospinal fluid samples were collected from 28 severe traumatic brain injury patients. Samples were retrieved at 12, 24, 48, 72 hours and before external ventricular drain removal. Fifteen control samples were obtained from patients with normal pressure hydrocephalus. Sulfonylurea receptor- 1 was quantified by enzyme-linked immunosorbent assay. Outcomes included CT edema, intracranial pressure measurements, therapies targeting edema, and 3-month Glasgow Outcome Scale score. MAIN RESULTS: Sulfonylurea receptor-1 was present in all severe traumatic brain injury patients (mean = 3.54 ± 3.39 ng/mL, peak = 7.13 ± 6.09 ng/mL) but undetectable in all controls (p < 0.001). Mean and peak sulfonylurea receptor-1 was higher in patients with CT edema (4.96 ± 1.13 ng/mL vs 2.10 ± 0.34 ng/mL; p = 0.023). There was a temporal delay between peak sulfonylurea receptor-1 and peak intracranial pressure in 91.7% of patients with intracranial hypertension. There was no association between mean/peak sulfonylurea receptor-1 and mean/peak intracranial pressure, proportion of intracranial pressure greater than 20 mm Hg, use of edema-directed therapies, decompressive craniotomy, or 3-month Glasgow Outcome Scale. However, decreasing sulfonylurea receptor-1 trajectories between 48 and 72 hours were significantly associated with improved cerebral edema and clinical outcome. Area under the multivariate model receiver operating characteristic curve was 0.881. CONCLUSIONS: This is the first report quantifying human cerebrospinal fluid sulfonylurea receptor-1. Sulfonylurea receptor-1 was detected in severe traumatic brain injury, absent in controls, correlated with CT-edema and preceded peak intracranial pressure. Sulfonylurea receptor-1 trajectories between 48 and 72 hours were associated with outcome. Because a therapy inhibiting sulfonylurea receptor-1 is available, assessing cerebrospinal fluid sulfonylurea receptor-1 in larger studies is warranted to evaluate our exploratory findings regarding its diagnostic, and monitoring utility, as well as its potential to guide targeted therapies in traumatic brain injury and other diseases involving cerebral edema.


Assuntos
Edema Encefálico/líquido cefalorraquidiano , Lesões Encefálicas Traumáticas/líquido cefalorraquidiano , Receptores de Sulfonilureias/metabolismo , Adolescente , Adulto , Idoso , Área Sob a Curva , Biomarcadores/líquido cefalorraquidiano , Edema Encefálico/diagnóstico por imagem , Edema Encefálico/etiologia , Edema Encefálico/terapia , Lesões Encefálicas Traumáticas/complicações , Estudos de Casos e Controles , Feminino , Escala de Coma de Glasgow , Escala de Resultado de Glasgow , Humanos , Pressão Intracraniana , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Curva ROC , Fatores de Tempo , Tomografia Computadorizada por Raios X , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...