Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 33(25)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35276689

RESUMO

Currently, there is growing interest in wearable and biocompatible smart computing and information processing systems that are safe for the human body. Memristive devices are promising for solving such problems due to a number of their attractive properties, such as low power consumption, scalability, and the multilevel nature of resistive switching (plasticity). The multilevel plasticity allows memristors to emulate synapses in hardware neuromorphic computing systems (NCSs). The aim of this work was to study Cu/poly-p-xylylene(PPX)/Au memristive elements fabricated in the crossbar geometry. In developing the technology for manufacturing such samples, we took into account their characteristics, in particular stable and multilevel resistive switching (at least 10 different states) and low operating voltage (<2 V), suitable for NCSs. Experiments on cycle to cycle (C2C) switching of a single memristor and device to device (D2D) switching of several memristors have shown high reproducibility of resistive switching (RS) voltages. Based on the obtained memristors, a formal hardware neuromorphic network was created that can be trained to classify simple patterns.

2.
Sci Rep ; 9(1): 10800, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346245

RESUMO

In this paper, the resistive switching and neuromorphic behaviour of memristive devices based on parylene, a polymer both low-cost and safe for the human body, is comprehensively studied. The Metal/Parylene/ITO sandwich structures were prepared by means of the standard gas phase surface polymerization method with different top active metal electrodes (Ag, Al, Cu or Ti of ~500 nm thickness). These organic memristive devices exhibit excellent performance: low switching voltage (down to 1 V), large OFF/ON resistance ratio (up to 104), retention (≥104 s) and high multilevel resistance switching (at least 16 stable resistive states in the case of Cu electrodes). We have experimentally shown that parylene-based memristive elements can be trained by a biologically inspired spike-timing-dependent plasticity (STDP) mechanism. The obtained results have been used to implement a simple neuromorphic network model of classical conditioning. The described advantages allow considering parylene-based organic memristors as prospective devices for hardware realization of spiking artificial neuron networks capable of supervised and unsupervised learning and suitable for biomedical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...