Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heart Rhythm ; 12(1): 181-92, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25447080

RESUMO

BACKGROUND: Membrane-associated guanylate kinase (MAGUK) proteins are important determinants of ion channel organization in the plasma membrane. In the heart, the MAGUK protein SAP97, encoded by the DLG1 gene, interacts with several ion channels via their PDZ domain-binding motif and regulates their function and localization. OBJECTIVE: The purpose of this study was to assess in vivo the role of SAP97 in the heart by generating a genetically modified mouse model in which SAP97 is suppressed exclusively in cardiomyocytes. METHODS: SAP97(fl/fl) mice were generated by inserting loxP sequences flanking exons 1-3 of the SAP97 gene. SAP97(fl/fl) mice were crossed with αMHC-Cre mice to generate αMHC-Cre/SAP97(fl/fl) mice, thus resulting in a cardiomyocyte-specific deletion of SAP97. Quantitative reverse transcriptase-polymerase chain reaction, western blots, and immunostaining were performed to measure mRNA and protein expression levels, and ion channel localization. The patch-clamp technique was used to record ion currents and action potentials. Echocardiography and surface ECGs were performed on anesthetized mice. RESULTS: Action potential duration was greatly prolonged in αMHC-Cre/SAP97(fl/fl) cardiomyocytes compared to SAP97(fl/fl) controls, but maximal upstroke velocity was unchanged. This was consistent with the decreases observed in IK1, Ito, and IKur potassium currents and the absence of effect on the sodium current INa. Surface ECG revealed an increased corrected QT interval in αMHC-Cre/SAP97(fl/fl) mice. CONCLUSION: These data suggest that ablation of SAP97 in the mouse heart mainly alters potassium channel function. Based on the important role of SAP97 in regulating the QT interval, DLG1 may be a susceptibility gene to be investigated in patients with congenital long QT syndrome.


Assuntos
Potenciais de Ação/fisiologia , Guanilato Quinases/fisiologia , Síndrome do QT Longo/etiologia , Proteínas de Membrana/fisiologia , Miócitos Cardíacos/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Canais de Sódio Disparados por Voltagem/fisiologia , Animais , Proteína 1 Homóloga a Discs-Large , Modelos Animais de Doenças , Eletrocardiografia , Síndrome do QT Longo/fisiopatologia , Camundongos , Camundongos Knockout
4.
Circulation ; 130(2): 147-60, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-24895455

RESUMO

BACKGROUND: Sodium channel NaV1.5 underlies cardiac excitability and conduction. The last 3 residues of NaV1.5 (Ser-Ile-Val) constitute a PDZ domain-binding motif that interacts with PDZ proteins such as syntrophins and SAP97 at different locations within the cardiomyocyte, thus defining distinct pools of NaV1.5 multiprotein complexes. Here, we explored the in vivo and clinical impact of this motif through characterization of mutant mice and genetic screening of patients. METHODS AND RESULTS: To investigate in vivo the regulatory role of this motif, we generated knock-in mice lacking the SIV domain (ΔSIV). ΔSIV mice displayed reduced NaV1.5 expression and sodium current (INa), specifically at the lateral myocyte membrane, whereas NaV1.5 expression and INa at the intercalated disks were unaffected. Optical mapping of ΔSIV hearts revealed that ventricular conduction velocity was preferentially decreased in the transversal direction to myocardial fiber orientation, leading to increased anisotropy of ventricular conduction. Internalization of wild-type and ΔSIV channels was unchanged in HEK293 cells. However, the proteasome inhibitor MG132 rescued ΔSIV INa, suggesting that the SIV motif is important for regulation of NaV1.5 degradation. A missense mutation within the SIV motif (p.V2016M) was identified in a patient with Brugada syndrome. The mutation decreased NaV1.5 cell surface expression and INa when expressed in HEK293 cells. CONCLUSIONS: Our results demonstrate the in vivo significance of the PDZ domain-binding motif in the correct expression of NaV1.5 at the lateral cardiomyocyte membrane and underline the functional role of lateral NaV1.5 in ventricular conduction. Furthermore, we reveal a clinical relevance of the SIV motif in cardiac disease.


Assuntos
Regulação da Expressão Gênica , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/biossíntese , Domínios PDZ/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Animais , Técnicas de Introdução de Genes , Células HEK293 , Humanos , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.5/fisiologia
5.
Future Cardiol ; 9(4): 467-70, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23834686

RESUMO

Evaluation of: Noorman M, Hakim S, Kessler E et al. Remodeling of the cardiac sodium channel, connexin43, and plakoglobin at the intercalated disk in patients with arrhythmogenic cardiomyopathy. Heart Rhythm 10(3), 412-419 (2013). Arrhythmogenic cardiomyopathy (AC) is a heart muscle disease characterized by a progressive replacement of the ventricular myocardium with adipose and fibrous tissue. This disease is often associated with mutations in genes encoding desmosomal proteins in the majority of patients. Based on results obtained from recent experimental models, a disturbed distribution of gap junction proteins and cardiac sodium channels may also be observed in AC phenotypes, secondary to desmosomal dysfunction. The study from Noorman et al. examined heart sections from patients diagnosed with AC and performed immunohistochemical analyses of N-cadherin, PKP2, PKG, Cx43 and the cardiac sodium channel NaV1.5. Altered expression/distribution of Cx43, PKG and NaV1.5 was found in most cases of patients with AC. The altered expression and/or distribution of NaV1.5 channels in AC hearts may play a mechanistic role in the arrhythmias leading to sudden cardiac death in AC patients. Thus, NaV1.5 should be considered as a supplemental element in the evaluation of risk stratification and management strategies. However, additional experiments are required to clearly understand the mechanisms leading to AC phenotypes.


Assuntos
Displasia Arritmogênica Ventricular Direita/genética , Conexina 43/genética , DNA/genética , Mutação , Miócitos Cardíacos/metabolismo , Canais de Sódio/genética , gama Catenina/genética , Feminino , Humanos , Masculino
6.
Biochim Biophys Acta ; 1833(4): 886-94, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23123192

RESUMO

The cardiac sodium current (INa) is responsible for the rapid depolarization of cardiac cells, thus allowing for their contraction. It is also involved in regulating the duration of the cardiac action potential (AP) and propagation of the impulse throughout the myocardium. Cardiac INa is generated by the voltage-gated Na(+) channel, NaV1.5, a 2016-residue protein which forms the pore of the channel. Over the past years, hundreds of mutations in SCN5A, the human gene coding for NaV1.5, have been linked to many cardiac electrical disorders, including the congenital and acquired long QT syndrome, Brugada syndrome, conduction slowing, sick sinus syndrome, atrial fibrillation, and dilated cardiomyopathy. Similar to many membrane proteins, NaV1.5 has been found to be regulated by several interacting proteins. In some cases, these different proteins, which reside in distinct membrane compartments (i.e. lateral membrane vs. intercalated disks), have been shown to interact with the same regulatory domain of NaV1.5, thus suggesting that several pools of NaV1.5 channels may co-exist in cardiac cells. The aim of this review article is to summarize the recent works that demonstrate its interaction with regulatory proteins and illustrate the model that the sodium channel NaV1.5 resides in distinct and different pools in cardiac cells. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.


Assuntos
Potenciais de Ação/fisiologia , Cardiomiopatias/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Animais , Cardiomiopatias/patologia , Acoplamento Excitação-Contração/fisiologia , Humanos , Transporte de Íons , Modelos Biológicos , Miocárdio/patologia , Miócitos Cardíacos/patologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Relação Estrutura-Atividade
7.
Dev Biol ; 335(2): 289-304, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19538956

RESUMO

The Drosophila central brain is composed of approximately 100 paired lineages, with most lineages comprising 100-150 neurons. Most lineages have a number of important characteristics in common. Typically, neurons of a lineage stay together as a coherent cluster and project their axons into a coherent bundle visible from late embryo to adult. Neurons born during the embryonic period form the primary axon tracts (PATs) that follow stereotyped pathways in the neuropile. Apoptotic cell death removes an average of 30-40% of primary neurons around the time of hatching. Secondary neurons generated during the larval period form secondary axon tracts (SATs) that typically fasciculate with their corresponding primary axon tract. SATs develop into the long fascicles that interconnect the different compartments of the adult brain. Structurally, we distinguish between three types of lineages: PD lineages, characterized by distinct, spatially separate proximal and distal arborizations; C lineages with arborizations distributed continuously along the entire length of their tract; D lineages that lack proximal arborizations. Arborizations of many lineages, in particular those of the PD type, are restricted to distinct neuropile compartments. We propose that compartments are "scaffolded" by individual lineages, or small groups thereof. Thereby, the relatively small number of primary neurons of each primary lineage set up the compartment map in the late embryo. Compartments grow during the larval period simply by an increase in arbor volume of primary neurons. Arbors of secondary neurons form within or adjacent to the larval compartments, resulting in smaller compartment subdivisions and additional, adult specific compartments.


Assuntos
Axônios , Encéfalo/embriologia , Drosophila/embriologia , Neurônios/citologia , Animais , Apoptose , Encéfalo/citologia , Linhagem da Célula , Imuno-Histoquímica , Modelos Biológicos
8.
Dev Biol ; 302(1): 309-23, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17070515

RESUMO

The central neuroendocrine system in the Drosophila brain includes two centers, the pars intercerebralis (PI) and pars lateralis (PL). The PI and PL contain neurosecretory cells (NSCs) which project their axons to the ring gland, a complex of peripheral endocrine glands flanking the aorta. We present here a developmental and genetic study of the PI and PL. The PI and PL are derived from adjacent neurectodermal placodes in the dorso-medial head. The placodes invaginate during late embryogenesis and become attached to the brain primordium. The PI placode and its derivatives express the homeobox gene Dchx1 and can be followed until the late pupal stage. NSCs labeled by the expression of Drosophila insulin-like peptide (Dilp), FMRF, and myomodulin form part of the Dchx1 expressing PI domain. NSCs of the PL can be followed throughout development by their expression of the adhesion molecule FasII. Decapentaplegic (Dpp), secreted along the dorsal midline of the early embryo, inhibits the formation of the PI and PL placodes; loss of the signal results in an unpaired, enlarged placodeal ectoderm. The other early activated signaling pathway, EGFR, is positively required for the maintenance of the PI placode. Of the dorso-medially expressed head gap genes, only tailless (tll) is required for the specification of the PI. Absence of the corpora cardiaca, the endocrine gland innervated by neurosecretory cells of the PI and PL, does not affect the formation of the PI/PL, indicating that inductive stimuli from their target tissue are not essential for early PI/PL development.


Assuntos
Drosophila/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Animais , Encéfalo/anatomia & histologia , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Genes Homeobox , Genes de Insetos , Sistemas Neurossecretores/anatomia & histologia , Sistemas Neurossecretores/embriologia , Sistemas Neurossecretores/crescimento & desenvolvimento
9.
J Comp Neurol ; 497(6): 981-98, 2006 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-16802336

RESUMO

Neurons of the Drosophila larval brain are formed by a stereotyped set of neuroblasts. As differentiation sets in, neuroblast lineages produce axon bundles that initially form a scaffold of unbranched fibers in the center of the brain primordium. Subsequently, axons elaborate interlaced axonal and dendritic arbors, which, together with sheath-like processes formed by glial cells, establish the neuropile compartments of the larval brain. By using markers that visualize differentiating axons and glial cells, we have analyzed the formation of neuropile compartments and their relationship to neuroblast lineages. Neurons of each lineage extend their axons as a cohesive tract ("primary axon bundle"). We generated a map of the primary axon bundles that visualizes the location of the primary lineages in the brain cortex where the axon bundles originate, the trajectory of the axon bundles into the neuropile, and the relationship of these bundles to the early-formed scaffold of neuropile pioneer tracts (Nassif et al. [1998] J. Comp. Neurol. 402:10-31). The map further shows the growth of neuropile compartments at specific locations around the pioneer tracts. Following the time course of glial development reveals that glial processes, which form prominent septa around compartments in the larval brain, appear very late in the embryonic neuropile, clearly after the compartments themselves have crystallized. This suggests that spatial information residing within neurons, rather than glial cells, specifies the location and initial shape of neuropile compartments.


Assuntos
Encéfalo/embriologia , Encéfalo/fisiologia , Drosophila/embriologia , Drosophila/fisiologia , Neurópilo/fisiologia , Animais , Embrião não Mamífero , Vias Neurais/embriologia , Vias Neurais/fisiologia
10.
Dev Biol ; 283(1): 191-203, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15907832

RESUMO

Glial cells subserve a number of essential functions during development and function of the Drosophila brain, including the control of neuroblast proliferation, neuronal positioning and axonal pathfinding. Three major classes of glial cells have been identified. Surface glia surround the brain externally. Neuropile glia ensheath the neuropile and form septa within the neuropile that define distinct neuropile compartments. Cortex glia form a scaffold around neuronal cell bodies in the cortex. In this paper we have used global glial markers and GFP-labeled clones to describe the morphology, development and proliferation pattern of the three types of glial cells in the larval brain. We show that both surface glia and cortex glia contribute to the glial layer surrounding the brain. Cortex glia also form a significant part of the glial layer surrounding the neuropile. Glial cell numbers increase slowly during the first half of larval development but show a rapid incline in the third larval instar. This increase results from mitosis of differentiated glia, but, more significantly, from the proliferation of neuroblasts.


Assuntos
Encéfalo/embriologia , Drosophila/embriologia , Morfogênese , Animais , Bromodesoxiuridina , Divisão Celular , Embrião não Mamífero/citologia , Embrião não Mamífero/fisiologia , Larva/fisiologia , Neuroglia/citologia , Neuroglia/fisiologia
11.
Dev Biol ; 263(1): 103-13, 2003 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-14568549

RESUMO

The Drosophila eye field that gives rise to the visual system and dorsal head epidermis forms an unpaired anlage located in the dorsal head ectoderm. The eye field expresses and requires both Dpp and EGFR signaling for its development. As shown in previous studies, EGFR is required for cell maintenance in the developing visual system. Dpp initially switches on the early eye genes so and eya in the eye field. Consecutively, high levels of Dpp in the dorsal midline inhibit these genes and promote development of head epidermis. We show that Dpp negatively regulates EGFR signaling, thereby increasing the amount of cell death in the dorsal midline. By this mechanism, Dpp controls the formation of a bilateral visual system and indirectly modulates cell death, which is essential for normal head morphogenesis. Loss of either Dpp or its downstream target, Zen, abolishes head epidermis fate and leads to the misexpression of dp-ERK in the dorsal midline. The resulting morphological phenotype consists of cyclopia, reduction of cell death, and failure of head involution. Ectopic expression of activated EGFR inhibits the Dpp target race and thereby causes cyclopia and defective head involution. We discuss possible mechanisms of Dpp and EGFR interaction in the embryo.


Assuntos
Padronização Corporal , Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Receptores ErbB/fisiologia , Olho/embriologia , Cabeça/embriologia , Transdução de Sinais , Animais , Morfogênese
12.
Development ; 129(17): 3983-94, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12163402

RESUMO

Dynamically regulated cell adhesion plays an important role during animal morphogenesis. Here we use the formation of the visual system in Drosophila embryos as a model system to investigate the function of the Drosophila classic cadherin, DE-cadherin, which is encoded by the shotgun (shg) gene. The visual system is derived from the optic placode which normally invaginates from the surface ectoderm of the embryo and gives rise to two separate structures, the larval eye (Bolwig's organ) and the optic lobe. The optic placode dissociates and undergoes apoptotic cell death in the absence of DE-cadherin, whereas overexpression of DE-cadherin results in the failure of optic placode cells to invaginate and of Bolwig's organ precursors to separate from the placode. These findings indicate that dynamically regulated levels of DE-cadherin are essential for normal optic placode development. It was shown previously that overexpression of DE-cadherin can disrupt Wingless signaling through titration of Armadillo out of the cytoplasm to the membrane. However, the observed defects are likely the consequence of altered DE-cadherin mediated adhesion rather than a result of compromising Wingless signaling, as overexpression of a DE-cadherin-alpha-catenin fusion protein, which lacks Armadillo binding sites, causes similar defects as DE-cadherin overexpression. We further studied the genetic interaction between DE-cadherin and the Drosophila EGF receptor homolog, EGFR. If EGFR function is eliminated, optic placode defects resemble those following DE-cadherin overexpression, which suggests that loss of EGFR results in an increased adhesion of optic placode cells. An interaction between EGFR and DE-cadherin is further supported by the finding that expression of a constitutively active EGFR enhances the phenotype of a weak shg mutation, whereas a mutation in rhomboid (rho) (an activator of the EGFR ligand Spitz) partially suppresses the shg mutant phenotype. Finally, EGFR can be co-immunoprecipitated with anti-DE-cadherin and anti-Armadillo antibodies from embryonic protein extracts. We propose that EGFR signaling plays a role in morphogenesis by modulating cell adhesion.


Assuntos
Caderinas/fisiologia , Proteínas de Drosophila , Receptores ErbB/fisiologia , Gânglios dos Invertebrados/embriologia , Transdução de Sinais , Transativadores , Animais , Apoptose/fisiologia , Proteínas do Domínio Armadillo , Drosophila melanogaster , Ectoderma/metabolismo , Olho/embriologia , Gânglios dos Invertebrados/metabolismo , Proteínas de Insetos/metabolismo , Morfogênese/fisiologia , Sistema Nervoso/embriologia , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição , Proteína Wnt1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...