Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Clin Anat ; 35(3): 340-346, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35043988

RESUMO

The posterior myofascial chain (PMC) or superficial back line encompasses a series of muscles interlinked by the deep fascia, extending from the foot to the fascial sheath of the eyeball. The deep cervical fascia of the neck, the epicranial aponeurosis of the head, and the fascial sheath of eyeball, form the proximal PMC. Although the literature has reported an anatomical myofascial continuum between the neck, head, and eyes, the anatomical descriptions vary substantially. Moreover, there is still no plausible functional interrelationship between the proximal structural myofascial links. Chronic neck pain is usually associated with a plethora of symptoms including craniofacial pain and oculomotor disorders. Understanding the anatomy of the proximal myofascial chain could help clinicians improvise treatment strategies for managing such painful head and neck disorders.


Assuntos
Dor Crônica , Fáscia , Fáscia/anatomia & histologia , Humanos , Músculo Esquelético/fisiologia , Pescoço , Cervicalgia
2.
Comput Methods Programs Biomed ; 208: 106273, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34284197

RESUMO

BACKGROUND AND OBJECTIVE: Total hip arthroplasty is known as one of the best advancements in orthopedics in the 20th century. Due to age or trauma hip joint has to replace by an artificial implant. After the hip arthroplasty, the patients can return to normal day-to-day activities with a normal range of motion. There are several types and designs are currently available. These designs usually depend upon the anatomy of the patients. There is a need for revision surgery due to dislocation and aseptic loosening in these joints over time in actively younger patients. Minor changes in the design stage can certainly improve the life expectancy of the implant and will also further reduce the revision rate. METHODS: In this current work, finite element analysis is carried out by varying the neck length with a change in femoral head size for a circular-shaped stem. The effects of using a shorter neck are analyzed. A total of nine combinations are considered for analysis. Modeling is carried out in CATIA V-6 and analysis is performed in ANSYS R-19. A femoral head of 36, 40, and 44 mm and taper neck length of 18, 16, and 14 mm is considered. CoPE is considered as the material combination for all the models. RESULTS: It was observed that the von Mises stresses in the complete implant tend to decrease with an increase in the femoral head size. Maximum 5% variation in stress values when 36 mm femoral head is compared with 44 mm. The stresses in the taper neck region tend to decrease with a decrease in the neck length. Minimum von Mises stress of 161.83 MPa was found for the complete implant and in the head-neck region, a minimum von Mises stress found 91.9 MPa. CONCLUSIONS: Performance evaluation of hip implant under static loading conditions gives a clear idea about the behavior of implant. It was found that a decrease in the von Mises stresses with a decrease in the taper length. However, these variations won't affect much in the performance of the hip implant. Also, a reduction in taper length can significantly increase the dislocation in the implant. So it is advised to consider the optimal taper length with an increase in the femoral head size.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Cabeça do Fêmur/diagnóstico por imagem , Cabeça do Fêmur/cirurgia , Análise de Elementos Finitos , Humanos , Estresse Mecânico
3.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-875923

RESUMO

@#Functional spinal unit (FSU) has been of major interest in research related to the human spine as it is the simplest entity of spine that is believed to provide vital information useful in analyzing the biomechanics of the spine. In-vitro experiments and in-vivo tests are implemented for this purpose, but due to many restraints in using them, the use of an alternate approach such as Finite Element Analysis (FEA) seems preferential. FEA offers an edge in evaluating significant parameters that may or may not be possible through experiments. The finite element analysis of FSU’s has evolved to handle complexity with the increase in computing capacity and advancement in the software packages. This paper reviews the progress in the development of finite element analysis of FSU’s and also focuses on the application of FEA to analyse the lumbar (L1-L5) and lumbosacral (L5-S1) levels of the spine where spinal disorders are more prevalent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...