Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38190494

RESUMO

We present a table-top setup for femtosecond time-resolved x-ray diffraction based on a Cu Kα (8.05 keV) laser driven plasma x-ray source. Due to its modular design, it provides high accessibility to its individual components (e.g., x-ray optics and sample environment). The Kα-yield of the source is optimized using a pre-pulse scheme. A magnifying multilayer x-ray mirror with Montel-Helios geometry is used to collect the emitted radiation, resulting in a quasi-collimated flux of more than 105 Cu Kα photons/pulse impinging on the sample under investigation at a repetition rate of 10 Hz. A gas ionization chamber detector is placed right after the x-ray mirror and used for the normalization of the diffraction signals, enabling the measurement of relative signal changes of less than 1% even at the given low repetition rate. Time-resolved diffraction experiments on laser-excited epitaxial Bi films serve as an example to demonstrate the capabilities of the setup. The setup can also be used for Debye-Scherrer type measurements on poly-crystalline samples.

2.
Opt Express ; 18(2): 700-12, 2010 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-20173890

RESUMO

We investigated single shot damage of Mo/Si multilayer coatings exposed to the intense fs XUV radiation at the Free-electron LASer facility in Hamburg - FLASH. The interaction process was studied in situ by XUV reflectometry, time resolved optical microscopy, and "post-mortem" by interference-polarizing optical microscopy (with Nomarski contrast), atomic force microscopy, and scanning transmission electron microcopy. An ultrafast molybdenum silicide formation due to enhanced atomic diffusion in melted silicon has been determined to be the key process in the damage mechanism. The influence of the energy diffusion on the damage process was estimated. The results are of significance for the design of multilayer optics for a new generation of pulsed (from atto- to nanosecond) XUV sources.


Assuntos
Membranas Artificiais , Molibdênio/química , Molibdênio/efeitos da radiação , Dispositivos Ópticos , Silício/química , Silício/efeitos da radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Raios Ultravioleta
3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(2 Pt 2): 026404, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19792265

RESUMO

We investigate the generation of ultrashort Kalpha pulses from plasmas produced by intense femtosecond p-polarized laser pulses on Copper and Titanium targets. Particular attention is given to the interplay between the angle of incidence of the laser beam on the target and a controlled prepulse. It is observed experimentally that the Kalpha yield can be optimized for correspondingly different prepulse and plasma scale-length conditions. For steep electron-density gradients, maximum yields can be achieved at larger angles. For somewhat expanded plasmas expected in the case of laser pulses with a relatively poor contrast, the Kalpha yield can be enhanced by using a near-normal-incidence geometry. For a certain scale-length range (between 0.1 and 1 times a laser wavelength) the optimized yield is scale-length independent. Physically this situation arises because of the strong dependence of collisionless absorption mechanisms-in particular resonance absorption-on the angle of incidence and the plasma scale length, giving scope to optimize absorption and hence the Kalpha yield. This qualitative description is supported by calculations based on the classical resonance absorption mechanism and by particle-in-cell simulations. Finally, the latter simulations also show that even for initially steep gradients, a rapid profile expansion occurs at oblique angles in which ions are pulled back toward the laser by hot electrons circulating at the front of the target. The corresponding enhancement in Kalpha yield under these conditions seen in the present experiment represents strong evidence for this suprathermal shelf formation effect.

4.
Rev Sci Instrum ; 80(8): 083102, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19725641

RESUMO

An elliptical glass capillary has been used to focus ultrashort Cu K alpha x-ray pulses emitted from a femtosecond laser-produced plasma. Due to its high magnification (7x), the optic transforms the divergent x-ray emission of the plasma into a quasicollimated x-ray beam with a divergence of only 0.18 degrees. As an application we demonstrate the possibility to perform Debye-Scherrer diffraction experiments with the simultaneous detection of several diffraction orders. This will allow one to extend time-resolved x-ray diffraction with femtosecond laser-plasma x-ray sources to a much wider range of materials, which are not easily available as single crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...