Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Drug Metab Pharmacokinet ; 43(3): 347-354, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29264831

RESUMO

BACKGROUND AND OBJECTIVES: Monomethyl auristatin E (MMAE), the toxin linked to CD30-specific monoclonal antibody of Adcetris® (brentuximab vedotin), is a potent anti-microtubule agent. Brentuximab vedotin has been approved for the treatment of relapsed or refractory Hodgkin lymphoma and anaplastic large cell lymphoma. Cytochrome P450 (CYP) induction assessment of MMAE was conducted in human hepatocytes to assess DDI potentials and its translation to clinic. METHODS: MMAE was incubated at 1-1000 nM with cultured primary human hepatocytes for 72 h, and CYP1A2, CYP2B6, and CYP3A4 mRNA expression was assessed by quantitative reverse transcription-polymerase chain reaction and CYP-specific probe substrate by liquid chromatography coupled with mass spectrometry, along with microtubule disruption by immunofluorescence staining using anti-ß-tubulin antibody and imaging. RESULTS: MMAE up to 10 nM had no significant effect on CYP1A2, CYP2B6, and CYP3A4 mRNA expression and activity, whereas at higher concentrations of 100- and 1000-nM MMAE, the CYP mRNA expression and activity were diminished substantially. Further investigation showed that the degree of CYP suppression was paralleled by that of microtubule disruption by MMAE, as measured by increase in the number of ß-tubulin-positive aggregates. At the clinical dose, the concentration of MMAE was 7 nM which did not show any significant CYP suppression or microtubule disruption in hepatocytes. CONCLUSIONS: MMAE was not a CYP inducer in human hepatocytes. However, it caused a concentration-dependent CYP mRNA suppression and activity. The CYP suppression was associated with microtubule disruption, supporting the reports that intact microtubule architecture is required for CYP regulations. The absence of CYP suppression and microtubule disruption in vitro at the clinical plasma concentrations of MMAE (< 10 nM) explains the lack of pharmacokinetic drug interaction between brentuximab vedotin and midazolam, a sensitive CYP3A substrate, reported in patients.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Imunoconjugados/farmacologia , Microtúbulos/efeitos dos fármacos , Oligopeptídeos/farmacologia , Antineoplásicos/farmacologia , Brentuximab Vedotin , Células Cultivadas , Interações Medicamentosas , Humanos , Microtúbulos/metabolismo , RNA Mensageiro/metabolismo
2.
Chem Res Toxicol ; 22(4): 690-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19253935

RESUMO

Reactive metabolite formation has been associated with drug-induced liver, skin, and hematopoietic toxicity of many drugs that has resulted in serious clinical toxicity, leading to clinical development failure, black box warnings, or, in some cases, withdrawal from the market. In vitro and in vivo screening for reactive metabolite formation has been proposed and widely adopted in the pharmaceutical industry with the aim of minimizing the property and thus the risk of drug-induced toxicity (DIT). One of the most common screening methods is in vitro thiol trapping of reactive metabolites. Although it is well-documented that many hepatotoxins form thiol adducts, there is no literature describing the adduct formation potential of safer drugs that are widely used. The objective of this study was to quantitatively assess the thiol adduct formation potential of 50 drugs (10 associated with DIT and 40 not associated) and document apparent differences in adduct formation between toxic and safer drugs. Dansyl glutathione was used as a trapping agent to aid the quantitation of adducts following in vitro incubation of drugs with human liver microsomes in the presence and absence of NADPH. Metabolic turnover of these drugs was also monitored by LC/UV. Overall, 15 out of the 50 drugs screened formed detectable levels of thiol adducts. There were general trends toward more positive findings in the DIT group vs the non-DIT group. These trends became more marked when the relative amount of thiol adducts was taken into account and improved further when dose and total daily reactive metabolite burdens were considered. In conclusion, there appears to be a general trend between the extent of thiol adduct formation and the potential for DIT, which would support the preclinical measurement and minimization of the property through screening of thiol adduct formation as part of an overall discovery optimization paradigm.


Assuntos
Glutationa/metabolismo , Medicamentos sob Prescrição/metabolismo , Cromatografia Líquida de Alta Pressão , Compostos de Dansil/química , Glutationa/química , Humanos , Fígado/enzimologia , Fígado/metabolismo , Espectrometria de Massas , Medicamentos sob Prescrição/química , Medicamentos sob Prescrição/toxicidade
3.
Drug Metab Lett ; 2(3): 184-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19356091

RESUMO

Troglitazone (TGZ) induced hepatotoxicity has been linked to cytochrome P450 (CYP)-catalyzed reactive metabolite formation. Therefore, the kinetics and CYP specificity of reactive metabolite formation were studied using dansyl glutathione (dGSH) as a trapping agent after incubation of TGZ with human liver microsomes (HLM) and recombinant human CYP proteins. CYP2C8 exhibited the highest rate of TGZ adduct (TGZ-dGS) formation, followed by CYP3A4, CYP3A5, and CYP2C19. The involvement of CYP2C8 and CYP3A4 was confirmed with CYP form-selective chemical inhibitors. The impact of TGZ concentration on the rate of TGZ-dGS formation was also evaluated. In this instance, two distinctly different profiles were observed with recombinant CYP3A4 and CYP2C8. It is concluded that both CYP3A4/5 and CYP2C8 play a major role in the formation of TGZ adduct in HLM. However, the contribution of these CYPs varies depending on their relative expression and the concentration of TGZ.


Assuntos
Cromanos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Hipoglicemiantes/metabolismo , Microssomos Hepáticos/enzimologia , Tiazolidinedionas/metabolismo , Hidrocarboneto de Aril Hidroxilases/metabolismo , Cromanos/administração & dosagem , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Compostos de Dansil/química , Relação Dose-Resposta a Droga , Regulação Enzimológica da Expressão Gênica , Glutationa/química , Humanos , Hipoglicemiantes/administração & dosagem , Fenótipo , Compostos de Sulfidrila/metabolismo , Tiazolidinedionas/administração & dosagem , Troglitazona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA