Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930296

RESUMO

Incorporating iron tailings (ITs) into asphalt represents a new method for waste-to-resource conversion. The objective of this study is to evaluate the fatigue performance of ITs as fillers in asphalt mastic and investigate the interaction and interfacial adhesion energy between asphalt and ITs. To achieve that, the particle size distributions of two ITs and limestone filler (LF) were tested through a laser particle size analyzer; the morphology and structure characteristics were obtained by scanning electronic microscopy (SEM), the mineral compositions were conducted through X-ray diffraction (XRD), and the chemical compositions were tested through X-ray Fluorescence Spectrometer (XRF). Furthermore, the fatigue properties of asphalt mastic and the interaction between asphalt binder and mineral fillers (ITs and LFs) were evaluated by Dynamic Shear Rheometer (DSR). The interfacial adhesion energy between ITs and asphalt binder were calculated through molecular dynamics simulation. In the end, the correlation between the test results and the fatigue life is established based on the gray correlation analysis, the environmental and economic benefits of iron tailings asphalt pavement are further evaluated. The results show that the particle size distribution of ITs is concentrated between 30 µm and 150 µm, and the main component is quartz. ITs have rich angularity and a higher interaction ability with asphalt. The adhesion energy of iron tailings filler to asphalt is less than that of limestone. The correlation degree of the interfacial adhesion energy and interaction between asphalt and mineral filler with asphalt mastic fatigue life is close to 0.58. Under the combined action of interaction ability and interfacial adhesion energy, the fatigue life of IT asphalt mastic meets the requirements. ITs as a partial replacement for mineral fillers in asphalt pavement have great environmental and social effectiveness.

2.
Materials (Basel) ; 16(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37895645

RESUMO

In hot and humid climates, asphalt pavements frequently encounter environmental factors such as elevated temperatures and rainfall, leading to rutting deformations and potholes, which can affect pavement performance. The primary objective of this study was to enhance the hydrothermal characteristics of asphalt mixtures through an investigation into the impact of anhydrous calcium sulfate whisker (ACSW) and polyester fiber (PF) on the hydrothermal properties of asphalt mixtures. In this paper, a central composite concatenation design (CCC) was employed to determine the optimal combination of ACSW and PF contents, as well as the asphalt aggregate ratio (AAR). Each influencing factor was assigned three levels for analysis. The evaluation indexes included dynamic stability, retained Marshall stability, and tensile strength ratio. Using the analysis methods of variance and gray correlation degree analysis, the hydrothermal properties of the asphalt mixture were examined in relation to the contents of ACSW, PF, and AAR based on the CCC results. Consequently, the optimal mix design parameters for composite modified asphalt mixture incorporating ACSW and PF were determined. The results indicated that the asphalt mixtures with hydrothermal qualities exhibited optimal performance in terms of 4.1% ARR, 11.84% ACSW, and 0.4% PF. The interaction between AAR and ACSW content had a greater effect on the dynamic stability and tensile strength ratio of the asphalt mixture, whereas the incorporation of ACSW and PF had a greater effect on the retained Marshall stability of the asphalt mixture. Among the three contributing factors, AAR exhibited the strongest relationship with the hydrothermal characteristics of the asphalt mixture, followed by the ACSW content; the correlation of PF content was the lowest. Therefore, to enhance the hydrothermal characteristics of the asphalt mixture, it is important to conduct a full evaluation of the constituents of ACSW and PF, along with the AAR in hot-humid regions.

3.
Materials (Basel) ; 16(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36676331

RESUMO

In order to improve the properties of calcium sulfate anhydrous whisker (ACSW) and polyester fiber composite reinforced asphalt mixture (ACPRA) to meet the service requirements of pavement materials in low-temperature environments, the central composite circumscribed design (CCC), a kind of response surface methodology, was chosen to optimize the design parameters. Three independence variables, asphalt aggregate ratio, ACSW content, and polyester fiber content were adopted to evaluate the design parameters. Four responsive variables, air voids, Marshall stability, splitting tensile strength, and failure tensile strain, were chosen to study the volumetric and mechanical characteristics, and the low-temperature behavior of ACPRA by the Marshall test and indirect tensile test at -10 °C. The results showed that, taking low-temperature behavior optimization as the objective, the CCC method was practicable to optimize design of ACPRA, and the optimization design parameters were asphalt aggregate ratio of 4.0%, ACSW content of 10.8%, and polyester fiber content of 0.4%. Furthermore, the impact of three independence variables interactions on four response variables was also discussed, and it was identified that the interaction between asphalt aggregate ratio and ACSW content, and between asphalt aggregate ratio and polyester fiber content, has greater bearing on the splitting tensile strength and failure tensile strain of APCRA. Meanwhile, ACSW and polyester fiber enhancing the low-temperature behavior of APCRA was primarily connected with their contents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...