Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ergonomics ; : 1-19, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016192

RESUMO

Modern aircraft cockpit system is highly information-intensive. Pilots often need to receive a large amount of information and make correct judgments and decisions in a short time. However, cognitive load can affect their ability to perceive, judge and make decisions accurately. Furthermore, the excessive cognitive load will induce incorrect operations and even lead to flight accidents. Accordingly, the research on cognitive load is crucial to reduce errors and even accidents caused by human factors. By using physiological acquisition systems such as eye movement, ECG, and respiration, multi-source physiological signals of flight cadets performing different flight tasks during the flight simulation experiment are obtained. Based on the characteristic indexes extracted from multi-source physiological data, the CGAN-DBN model is established by combining the conditional generative adversarial networks (CGAN) model with the deep belief network (DBN) model to identify the flight cadets' cognitive load. The research results show that the flight cadets' cognitive load identification based on the CGAN-DBN model established has high accuracy. And it can effectively identify the cognitive load of flight cadets. The research paper has important practical significance to reduce the flight accidents caused by the high cognitive load of pilots.


In our study, a highly accurate cognitive load identification model for flight cadets was established by using multi-source physiological data. Moreover, it provides a theoretical basis for identifying the cognitive load of pilots through wearable physiological devices. Our intent is to catalyse further research and technological development.

2.
Appl Opt ; 61(34): 10240-10249, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36606788

RESUMO

Computational fluid dynamics (CFD) numerical simulation as the primary research tool is particularly essential for its credibility during the aerodynamic design of aircraft. To further promote CFD verification and validation on the airliner, a high-fidelity model reconstruction of the airliner is fundamental. Based on this, we put forward a novel framework, to our best knowledge, to reconstruct a high-fidelity standard model for an airliner efficiently, and the feasibility and accuracy of these reconstructed models are accessed by the CFD simulation-based validation method. First and foremost, a laser scanner was placed at each station around the airliner to scan and acquire multiview point clouds. Afterwards, the truncated least-squares-based algorithm was adopted to register these point clouds entirely. Additionally, we fitted the nonuniform rational basis spline surface based on the least-squares progressive and iterative approximation algorithm. Finally, CFD simulation results were compared and analyzed with the aerodynamic data obtained by the aircraft manufacturer under the same Mach number of the uniform model. It turns out that the coincidence between them is high, and the changing trend is basically consistent. Hence, this method is highly feasible and can establish a high-fidelity standard model of an airliner with unified high and low speeds so that its appearance, test data, and research results can be adopted as the standard data for CFD verification and validation.

3.
Sensors (Basel) ; 21(9)2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33922915

RESUMO

Fatigue is an important factor affecting modern flight safety. It can easily lead to a decline in pilots' operational ability, misjudgments, and flight illusions. Moreover, it can even trigger serious flight accidents. In this paper, a wearable wireless physiological device was used to obtain pilots' electrocardiogram (ECG) data in a simulated flight experiment, and 1440 effective samples were determined. The Friedman test was adopted to select the characteristic indexes that reflect the fatigue state of the pilot from the time domain, frequency domain, and non-linear characteristics of the effective samples. Furthermore, the variation rules of the characteristic indexes were analyzed. Principal component analysis (PCA) was utilized to extract the features of the selected feature indexes, and the feature parameter set representing the fatigue state of the pilot was established. For the study on pilots' fatigue state identification, the feature parameter set was used as the input of the learning vector quantization (LVQ) algorithm to train the pilots' fatigue state identification model. Results show that the recognition accuracy of the LVQ model reached 81.94%, which is 12.84% and 9.02% higher than that of traditional back propagation neural network (BPNN) and support vector machine (SVM) model, respectively. The identification model based on the LVQ established in this paper is suitable for identifying pilots' fatigue states. This is of great practical significance to reduce flight accidents caused by pilot fatigue, thus providing a theoretical foundation for pilot fatigue risk management and the development of intelligent aircraft autopilot systems.


Assuntos
Medicina Aeroespacial , Dispositivos Eletrônicos Vestíveis , Aeronaves , Eletrocardiografia , Fadiga/diagnóstico , Humanos
4.
J Environ Sci (China) ; 56: 52-61, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28571870

RESUMO

Air pollution is one of the main factors that affect the air quality in aircraft cabins, and the use of different air supply modes could influence the distribution of air pollutants in cabins. Based on the traditional ceiling air supply mode used on the B737NG, this study investigated another 3 different kinds of air supply modes for comparison: luggage rack air supply mode, joint mode combining ceiling and luggage rack air supply, and joint mode combining ceiling and individual air supply. Under the above 4 air supply modes, the air velocity, temperature and distribution of air pollutants in a cabin full of passengers were studied using computational fluid dynamics (CFD), and carbon dioxide (CO2) and formaldehyde were selected as 2 kinds of representative air pollutants. The simulation results show that the joint mode combining ceiling and individual air supply can create a more uniform distribution of air velocity and temperature, has a better effect on the removal of CO2 and formaldehyde, and can provide better air quality in cabins than the other 3 modes.


Assuntos
Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Aeronaves , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Simulação por Computador , Modelos Químicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...