Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(2): e2304146, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38010981

RESUMO

Conversion-type electrodes offer a promising multielectron transfer alternative to intercalation hosts with potentially high-capacity release in batteries. However, the poor cycle stability severely hinders their application, especially in aqueous multivalence-ion systems, which can fundamentally impute to anisotropic ion diffusion channel collapse in pristine crystals and irreversible bond fracture during repeated conversion. Here, an amorphous bismuth sulfide (a-BS) formed in situ with unprecedentedly self-controlled moderate conversion Cu2+ storage is proposed to comprehensively regulate the isotropic ion diffusion channels and highly reversible bond evolution. Operando synchrotron X-ray diffraction and substantive verification tests reveal that the total destruction of the Bi─S bond and unsustainable deep alloying are fully restrained. The amorphous structure with robust ion diffusion channels, unique self-controlled moderate conversion, and high electrical conductivity discharge products synergistically boosts the capacity (326.7 mAh g-1 at 1 A g-1 ), rate performance (194.5 mAh g-1 at 10 A g-1 ), and long-lifespan stability (over 8000 cycles with a decay rate of only 0.02 ‰ per cycle). Moreover, the a-BS Cu2+ ‖Zn2+ hybrid ion battery can well supply a stable energy density of 238.6 Wh kg-1 at 9760 W kg-1 . The intrinsically high-stability conversion mechanism explored on amorphous electrodes provides a new opportunity for advanced aqueous storage.

2.
Adv Mater ; 35(52): e2306810, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37722006

RESUMO

Titanium selenide (TiSe2 ), a model transition metal chalcogenide material, typically relies on topotactic ion intercalation/deintercalation to achieve stable ion storage with minimal disruption of the transport pathways but has restricted capacity (<130 mAh g-1 ). Developing novel energy storage mechanisms beyond conventional intercalation to break capacity limits in TiSe2 cathodes is essential yet challenging. Herein, the ion storage properties of TiSe2 are revisited and an unusual thermodynamically stable twin topotactic/nontopotactic Cu2+ accommodation mechanism for aqueous batteries is unraveled. In situ synchrotron X-ray diffraction and ex situ microscopy jointly demonstrated that topotactic intercalation sustained the ion transport framework, nontopotactic conversion involved localized multielectron reactions, and these two parallel reactions are miraculously intertwined in nanoscale space. Comprehensive experimental and theoretical results suggested that the twin-reaction mechanism significantly improved the electron transfer ability, and the reserved intercalated TiSe2 structure anchored the reduced titanium monomers with high affinity and promoted efficient charge transfer to synergistically enhance the capacity and reversibility. Consequently, TiSe2 nanoflake cathodes delivered a never-before-achieved capacity of 275.9 mAh g-1 at 0.1 A g-1 , 93.5% capacity retention over 1000 cycles, and endow hybrid batteries (TiSe2 -Cu||Zn) with a stable energy supply of 181.34 Wh kg-1 at 2339.81 W kg-1 , offering a promising model for aqueous ion storage.

3.
ACS Nano ; 17(19): 19144-19154, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37772918

RESUMO

Electronic structure defines the conductivity and ion absorption characteristics of a functional electrode, significantly affecting the charge transfer capability in batteries, while it is rarely thought to be involved in mesoscopic volume and diffusion kinetics of the host lattice for promoting ion storage. Here, we first correlate the evolution in electronic structure of the Mo6S8 cathode with the ability to bound volume expansion and accelerate diffusion kinetics for high-performance aqueous Cu2+ storage. Operando synchrotron energy-dispersive X-ray absorption spectroscopy reveals that accumulative delocalized Mo 4d electrons enhance the Mo-Mo interaction with distinctly contracting and uniformizing Mo6 clusters during the reduction of Mo6S8, which potently restrain lattice expansion and release space to promote Cu2+ diffusion kinetics. Operando synchrotron X-ray diffraction and comprehensive characterizations further validate the structural and electrochemical properties induced by the Cu2+ intercalation electronic structure, endowing the Mo6S8 cathode a high specific capacity with small volume expansion, fast ions diffusion, and long-term cycling stability.

4.
Adv Mater ; 35(48): e2305087, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37572369

RESUMO

High-energy metal anodes for large-scale reversible batteries with inexpensive and nonflammable aqueous electrolytes promise the capability of supporting higher current density, satisfactory lifetime, nontoxicity, and low-cost commercial manufacturing, yet remain out of reach due to the lack of reliable electrode-electrolyte interphase engineering. Herein, in situ formed robust interphase on copper metal electrodes (CMEs) induced by a trace amount of potassium dihydrogen phosphate (0.05 m in 1 m CuSO4 -H2 O electrolyte) to fulfill all aforementioned requirements is demonstrated. Impressively, an unprecedented ultrahigh-speed copper plating/stripping capability is achieved at 100 mA cm-2  for over 12 000 cycles, corresponding to an accumulative areal capacity up to tens of times higher than previously reported CMEs. The use of solid-electrolyte interface-protection strategy brings at least an order of magnitude improvement in cycling stability for symmetric cells (Cu||Cu, 2800 h) and full batteries with CMEs using either sulfur cathodes (S||Cu, 1000 cycles without capacity decay) or zinc anodes (Cu||Zn with all-metal electrodes, discharge voltage ≈1.02 V). The comprehensive analysis reveals that the hydrophilic phosphate-rich interphase nanostructures homogenize copper-ion deposition and suppress nucleation overpotential, enabling dendrite-free CMEs with sustainability and ability to tolerate unusual-high power densities. The findings represent an elegant forerunner toward the promising goal of metal electrode applications.

5.
ACS Nano ; 17(7): 6497-6506, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36975102

RESUMO

Exploring stable and durable cathodes for cost-effective reversible aqueous batteries is highly desirable for grid-scale energy storage applications, but significant challenges remain. Herein, we disclosed an ultrastable Cu2+ intercalation chemistry in mass-produced exfoliated NbS2 nanosheets to build ultralong lifespan aqueous batteries with cost advantages. Anisotropic interplanar expansion of NbS2 lattices balanced dynamic Cu2+ incorporation and the highly reversible redox reaction of Nb4+/Nb(4-δ)+ couple were illuminated by operando synchrotron X-ray diffraction and energy dispersive X-ray absorption spectroscopy, affording an extraordinary capacity of approximately 317 mAh g-1 at 1 A g-1 and a good stability of 92.2% capacity retention after 40000 cycles at 10 A g-1. Impressively, a budget NbS2||Fe hybrid ion cell involving an aqueous electrolyte/Fe-metal anode is established and provides a reliable energy supply of 225.4 Wh kg-1 at 750 W kg-1, providing insights for building advanced aqueous battery systems for large-scale applications.

6.
Adv Mater ; 35(9): e2209322, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36482793

RESUMO

Pursuing conversion-type cathodes with high volumetric capacity that can be used in aqueous environments remains rewarding and challenging. Tellurium (Te) is a promising alternative electrode due to its intrinsic attractive electronic conductivity and high theoretical volumetric capacity yet still to be explored. Herein, the kinetically/thermodynamically co-dominat copper-tellurium (Cu-Te) alloying phase-conversion process and corresponding oxidation failure mechanism of tellurium are investigated using in situ synchrotron X-ray diffraction and comprehensive ex situ characterization techniques. By virtue of the fundamental insights into the tellurium electrode, facile and precise electrolyte engineering (solvated structure modulation or reductive antioxidant addition) is implemented to essentially tackle the dramatic capacity loss in tellurium, affording reversible aqueous Cu-Te conversion reaction with an unprecedented ultrahigh volumetric capacity of up to 3927 mAh cm-3 , a flat long discharge plateau (capacity proportion of ≈81%), and an extraordinary level of capacity retention of 80.4% over 2000 cycles at 20 A g-1 of which lifespan thousand-fold longer than Cu-Te conversion using CuSO4 -H2 O electrolyte. This work paves a significant avenue for expanding high-performance conversion-type cathodes toward energetic aqueous multivalent-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...