Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(36): 12944-12955, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37639000

RESUMO

Uncovering gas adsorption characteristics of coal at the molecular scale is of great theoretical significance for the study of gas occurrence, coalbed methane exploitation, and carbon dioxide sequestration. In this study, based on proximate analysis, ultimate analysis, 13C nuclear magnetic resonance, and Fourier-transform infrared spectroscopy experiments, the existence forms and relative contents of elements of anthracite in the Qinshui Basin were tested and analyzed, and a macromolecular structure model was constructed. Besides, three types of acidic oxygen-containing functional groups, namely, carboxyl groups, phenolic hydroxyl groups, and lactone groups, were added to the molecular model. Furthermore, CH4 adsorption simulation was conducted on the original molecular model of anthracite and models with three types of acidic functional groups added. The following research results were obtained. The molecular formula of the constructed macromolecular model of anthracite in the Qinshui Basin is C193H138N2O7. The molecular structure of coal becomes more compact and curved after structural optimization and annealing optimization. For the four models, the CH4 adsorption characteristics of coal molecules all conform to the Langmuir equation under the same simulation conditions. Among them, the original model has the largest CH4 adsorption capacity, while the addition of oxygen-containing functional groups reduces the CH4 adsorption capacity to varying extents. The reduction of CH4 adsorption capacity follows the order: adding carboxyl groups > adding phenolic hydroxyl groups > adding lactone groups, which is mainly attributed to the different adsorption heats and adsorptive potential wells triggered by the addition of acidic functional groups in molecules.

2.
Chem Sci ; 14(23): 6348-6354, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37325135

RESUMO

Piezochromic fluorescent (PCF) materials that feature high sensitivity and wide-range switching are attractive in intelligent optoelectronic applications but their fabrication remains a significant challenge. Here we present a propeller-like squaraine dye SQ-NMe2 decorated with four peripheral dimethylamines acting as electron donors and spatial obstacles. This precise peripheral design is expected to loosen the molecular packing pattern and facilitate more substantial intramolecular charge transfer (ICT) switching caused by conformational planarization under mechanical stimuli. As such, the pristine SQ-NMe2 microcrystal exhibits significant fluorescence changes from yellow (λem = 554 nm) to orange (λem = 590 nm) upon slight mechanical grinding and further to deep red (λem = 648 nm) upon heavy mechanical grinding. Single-crystal X-ray diffraction structural analysis of two SQ-NMe2 polymorphs provides direct evidence to illustrate the design concept of such a piezochromic molecule. The piezochromic behavior of SQ-NMe2 microcrystals is sensitive, high-contrast, and easily reversible, enabling cryptographic applications.

3.
ACS Omega ; 8(24): 22211-22222, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37360500

RESUMO

Coal seam water injection is a kind of comprehensive prevention and control measure to avoid gas outburst and coal dust disasters. However, the gas adsorbed in the coal seriously influence the coal-water wetting effect. With the deepening of coal seam mining, the gas pressure also gradually increases, but there is still a lack of in-depth understanding of the coal-water wetting characteristics under the high-pressure adsorbed gas environment. Therefore, the mechanism of coal-water contact angle under different gas environments was experimentally investigated. The coal-water adsorption mechanism in pre-absorbed gas environment was analyzed by molecular dynamics simulation combined with FTIR, XRD, and 13C NMR. The results showed that the contact angle in the CO2 environment increased most significantly, with the contact angle increasing by 17.62° from 63.29° to 80.91°, followed by the contact angle increasing by 10.21° in the N2 environment. The increase of coal-water contact angle in the He environment is the smallest, which is 8.89°. At the same time, the adsorption capacity of water molecules decreases gradually with increasing gas pressure, and the total system energy decreases after the coal adsorbs gas molecules, leading to a decrease in the coal surface free energy. Therefore, the coal surface structure tends to be stable with rising gas pressure. With the increase in environmental pressure, the interaction between coal and gas molecules enhances. In addition, the adsorptive gas will be adsorbed in the pores of coal in advance, occupying the primary adsorption sites and thus competing with the subsequent water molecules, resulting in a decline of coal wettability. Moreover, the stronger the adsorption capacity of gas, the more obvious the competitive adsorption of gas and liquid, which further weakens the wetting capacity of coal. The research results can provide a theoretical support for improving the wetting effect in coal seam water injection.

4.
Chem Commun (Camb) ; 59(24): 3598-3601, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36883558

RESUMO

The first maximum emission wavelength beyond 1200 nm acceptor-substituted squaraine fluorophore with ultra-high brightness and photostability has been developed. It can be co-assembled with bovine serum albumin to form an excellent biocompatible dye-protein nanocomplex with significant fluorescence enhancement for high-resolution vascular imaging.


Assuntos
Ciclobutanos , Soroalbumina Bovina , Fenóis , Corantes Fluorescentes
5.
J Mater Chem B ; 11(11): 2431-2439, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36810648

RESUMO

Fluorescence imaging has enabled much progress in biological fields, while the evolution of commercially available dyes has lagged behind their advanced applications. Herein, we launch triphenylamine-equipped 1,8-naphthaolactam (NP-TPA) as a versatile scaffold for the custom design of an efficient subcellular imaging agent (NP-TPA-Tar), given its bright and constant emissions in various states, significant Stokes shifts, and facile modifiability. The resultant four NP-TPA-Tars maintain excellent emission behavior with targeted modifications and can map the spatial distribution of lysosomes, mitochondria, endoplasmic reticulum, and plasma membrane in Hep G2 cells. Compared to its commercial counterpart, NP-TPA-Tar has a 2.8-25.2 fold increase in Stokes shift, a 1.2-1.9 fold increase in photostability, enhanced targeting capability, and comparable imaging efficiency even at low concentrations of 50 nM. This work will help to accelerate the update of current imaging agents and super-resolution and real-time imaging in biological applications.


Assuntos
Mitocôndrias , Imagem Óptica , Aminas
6.
Environ Sci Pollut Res Int ; 30(2): 4278-4292, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35971051

RESUMO

Surfactant can improve the wettability of water to coal, which is beneficial to reduce the production of coal dust in coal seam water injection. Through the measurement and calculation of contact angle and its decay rate, the wettability differences of SDS (C12H25OSO3Na), AES (C14H29O5NaS), OP-10 (C18H30O10), and JFC (RO(CH2CH2O)nH) to anthracite were compared. In addition, the wetting modification effect and infiltration rate of anthracite by water, AES, and OP-10 were studied by infrared spectroscopy and complex impedance monitoring of coal pillar immersion process. The results show that when the concentration of surfactant is 0.1%, the contact angle decay time of OP-10 is very short, and the contact angle decay rate is as high as 19°/s. The decay rate can more obviously reflect the wettability difference of surfactants. And the wetting modification effect of OP-10 on anthracite is stronger than that of AES, and the peaks of oxygen-containing functional groups such as carboxyl and hydroxyl groups are stronger. Furthermore, the capillary force between OP-10 and anthracite is much larger than that of water, which shows the characteristics of fast water absorption and wide distribution in the infiltration experiment of columnar coal. The results of complex impedance measurement indicate that the impedance decay rate of coal is well correlated with capillary rise factor FC, contact angle decay rate, and contact angle. It is hoped that the research results can provide help for coal seam water injection and dust prevention.


Assuntos
Carvão Mineral , Tensoativos , Molhabilidade , Tensoativos/química , Impedância Elétrica , Água/química
7.
Food Chem ; 389: 133033, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35490516

RESUMO

Sea cucumber collagen (SCC) properties affected the thermal processing of sea cucumber. SCC showed the shear-thinning and pseudo-plastic properties, and the viscosity and frequency of viscoelastic crossover were decreased gradually with the temperature from 15 to 30 °C. Differential scanning calorimetry of SCC confirmed that it was thermolabile with the increase of temperatures, acid or NaCl concentrations. As the temperature increasing, the triple helix of SCC disappeared with the decrease of the relative proportion of P2 structures by circular dichroism spectrometry and Fourier transform infrared spectroscopy, and shearing could accelerate the change. Intramolecular changes investigated by molecular dynamics simulation showed the average number of hydrogen bonds decreased from 47 (20 °C) to 42 (80 °C), indicating triple helix of SCC was triggered to uncoil within 250 ns. These results could provide a scientific basis for processing of sea cucumbers.


Assuntos
Pepinos-do-Mar , Animais , Colágeno/química , Reologia , Pepinos-do-Mar/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
8.
Sci Rep ; 11(1): 7138, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785782

RESUMO

Joule heats which are generated by coals in an applied electric field are directly correlated with variation resistivity of electrical parameters of coals. Moreover, the joule heating effect is closely related with microstructural changes and relevant products of coal surface. In the present study, a self-developed applied direct current (DC) field was applied onto an experimental system of coals to investigate variation resistivity of electrical parameters of highly, moderately and lowly metamorphic coal samples. Moreover, breakdown voltages and breakdown field intensities of above three coal samples with different metamorphic grades were tested and calculated. Variation resistivity of electrical parameters of these three coal samples in 2 kV and 4 kV DC fields were analyzed. Results show that internal current of all coal samples increases continuously and tends to be stable gradually after reaching the "inflection point" at peak. The relationship between temperature rise effect on anthracite coal surface in an applied DC field and electrical parameters was discussed. The temperature rise process on anthracite coal surface is composed of three stages, namely, slowly warming, rapid warming and slow cooling to stabilize. The temperature rise effect on anthracite coal surface lags behind changes of currents which run through coal samples. There's uneven temperature distribution on anthracite coal surface, which is attributed to the heterogeneity of coal samples. In the experiment, the highest temperature on anthracite coal surface 65.8 â„ƒ is far belower than the lowest temperature for pyrolysis-induced gas production of coals 200 â„ƒ. This study lays foundations to study microstructural changes and relevant products on coal surface in an applied DC field.

9.
J Photochem Photobiol B ; 165: 34-41, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27768951

RESUMO

Chronic exposure to ultraviolet (UV) irradiation causes skin photoaging. This study was undertaken to identify the anti-photoaging mechanisms of gelatin hydrolysate (CH) derived from pacific cod skin. Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) and ELISA assays were used to investigate the effects of CH on matrix metalloproteinases (MMPs) and the signaling pathways after UV irradiation by using a mice skin photoaging model. The average molecular weight of CH was 1200Da, and 273/1000 residues were hydrophobic, Gly-Pro and Gly-Leu sequences and Arg at C-terminus appeared frequently in CH. CH improved pathological changes of collagen fibers and significantly inhibited collagen content reduction in photoaging skin. Moreover, CH blocked the up-regulated expression of interstitial collagenase (MMP-1), stromelysin 1 (MMP-3), and gelatinase (MMP-9) in photoaging skin. Besides, CH suppressed the activities of MMPs by increasing the contents of tissue inhibitors of matrix metalloproteinases (TIMPs). CH significantly reduced the UV irradiation-dependent up-regulated phosphorylation of ERK and p38 in the mitogen-activated protein kinase (MAPK) signaling pathway. Furthermore, it inhibited the activation of activator protein 1 (AP-1) by down-regulating the mRNA level of c-Jun and c-Fos, which are the two transcription factors responsible for the regulation of MMPs expression. CH can effectively protect against UV irradiation-induced skin photoaging by inhibiting the expression and the activity of MMPs.


Assuntos
Gelatina/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinases da Matriz/efeitos dos fármacos , Peptídeos/farmacologia , Inibidores de Proteases/farmacologia , Envelhecimento da Pele , Aminoácidos/química , Animais , Gadiformes , Gelatina/química , Peso Molecular , Peptídeos/química , Fosforilação
10.
Molecules ; 21(5)2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27187339

RESUMO

The structure and distribution of organic sulfur in coals of different rank and different sulfur content were studied by combining mild organic solvent extraction with XPS technology. The XPS results have shown that the distribution of organic sulfur in coal is related to the degree of metamorphism of coal. Namely, thiophenic sulfur content is reduced with decreasing metamorphic degree; sulfonic acid content rises with decreasing metamorphic degree; the contents of sulfate sulfur, sulfoxide and sulfone are rarely related with metamorphic degree. The solvent extraction and GC/MS test results have also shown that the composition and structure of free and soluble organic sulfur small molecules in coal is closely related to the metamorphic degree of coal. The free organic sulfur small molecules in coal of low metamorphic degree are mainly composed of aliphatic sulfides, while those in coal of medium and high metamorphic degree are mainly composed of thiophenes. Besides, the degree of aromatization of organic sulfur small molecules rises with increasing degree of coalification.


Assuntos
Carvão Mineral , Compostos Orgânicos/química , Ácidos Sulfônicos/química , Enxofre/química , Sulfetos/química , Tiofenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...