Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(43): 16662-16672, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37782530

RESUMO

Previous studies mostly held that the oxidation capacity of ferrate depends on the involvement of intermediate iron species (i.e., FeIV/FeV), however, the potential role of the metastable complex was disregarded in ferrate-based heterogeneous catalytic oxidation processes. Herein, we reported a complexation-mediated electron transfer mechanism in the ferrihydrite-ferrate system toward sulfamethoxazole (SMX) degradation. A synergy between intermediate FeIV/FeV oxidation and the intramolecular electron transfer step was proposed. Specifically, the conversion of phenyl methyl sulfoxide (PMSO) to methyl phenyl sulfone (PMSO2) suggested that FeIV/FeV was involved in the oxidation of SMX. Moreover, based on the in situ Raman test and chronopotentiometry analysis, the formation of the metastable complex of ferrihydrite/ferrate was found, which possesses higher oxidation potential than free ferrate and could achieve the preliminary oxidation of organics via the electron transfer step. In addition, the amino group of SMX could complex with ferrate, and the resulting metastable complex of ferrihydrite/ferrate would combine further with SMX molecules, leading to intramolecular electron transfer and SMX degradation. The ferrate loss experiments suggested that ferrihydrite could accelerate the decomposition of ferrate. Finally, the effects of pH value, anions, humic acid, and actual water on the degradation of SMX by ferrihydrite-ferrate were also revealed. Overall, ferrihydrite demonstrated high catalytic capacity, good reusability, and nontoxic performance for ferrate activation. The ferrihydrite-ferrate process may be a green and promising method for organic removal in wastewater treatment.


Assuntos
Elétrons , Poluentes Químicos da Água , Ferro/química , Compostos Férricos , Oxirredução , Compostos Orgânicos , Poluentes Químicos da Água/análise
2.
J Hazard Mater ; 459: 132054, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37473569

RESUMO

Sulfate radical-based advanced oxidation processes (AOPs) combined biological system was a promising technology for treating antibiotic wastewater. However, how pretreatment influence antibiotic resistance genes (ARGs) propagation remains largely elusive, especially the produced by-products (antibiotic residues and sulfate) are often ignored. Herein, we investigated the effects of zero valent iron/persulfate pretreatment on ARGs in bioreactors treating sulfadiazine wastewater. Results showed absolute and relative abundance of ARGs reduced by 59.8%- 81.9% and 9.1%- 52.9% after pretreatments. The effect of 90-min pretreatment was better than that of the 30-min. The ARGs reduction was due to decreased antibiotic residues and stimulated sulfate assimilation. Reduced antibiotic residues was a major factor in ARGs attenuation, which could suppress oxidative stress, inhibit mobile genetic elements emergence and resistant strains proliferation. The presence of sulfate in influent supplemented microbial sulfur sources and facilitated the in-situ synthesis of antioxidant cysteine through sulfate assimilation, which drove ARGs attenuation by alleviating oxidative stress. This is the first detailed analysis about the regulatory mechanism of how sulfate radical-based AOPs mediate in ARGs attenuation, which is expected to provide theoretical basis for solving concerns about by-products and developing practical methods to hinder ARGs propagation.


Assuntos
Genes Bacterianos , Águas Residuárias , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Sulfatos/farmacologia , Reatores Biológicos , Óxidos de Enxofre/farmacologia
3.
J Hazard Mater ; 454: 131463, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37141778

RESUMO

Recently, Mn-based materials have a great potential for selective removal of organic contaminants with the assistance of oxidants (PMS, H2O2) and the direct oxidation. However, the rapid oxidation of organic pollutants by Mn-based materials in PMS activation still presents a challenge due to the lower conversion of surface Mn (III)/Mn (IV) and higher reactive energy barrier for reactive intermediates. Here, we constructed Mn (III) and nitrogen vacancies (Nv) modified graphite carbon nitride (MNCN) to break these aforementioned limitations. Through analysis of in-situ spectra and various experiments, a novel mechanism of light-assistance non-radical reaction is clearly elucidated in MNCN/PMS-Light system. Adequate results indicate that Mn (III) only provide a few electrons to decompose Mn (III)-PMS* complex under light irradiation. Thus, the lacking electrons necessarily are supplied from BPA, resulting in its greater removal, then the decomposition of the Mn (III)-PMS* complex and light synergism form the surface Mn (IV) species. Above Mn-PMS complex and surface Mn (IV) species lead to the BPA oxidation in MNCN/PMS-Light system without the involvement of sulfate (SO4• ̶) and hydroxyl radicals (•OH). The study provides a new understanding for accelerating non-radical reaction in light/PMS system for the selective removal of contaminant.

4.
Environ Res ; 231(Pt 1): 115996, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37105290

RESUMO

Accurately determining the second-order rate constant with eaq- (keaq-) for organic compounds (OCs) is crucial in the eaq- induced advanced reduction processes (ARPs). In this study, we collected 867 keaq- values at different pHs from peer-reviewed publications and applied machine learning (ML) algorithm-XGBoost and deep learning (DL) algorithm-convolutional neural network (CNN) to predict keaq-. Our results demonstrated that the CNN model with transfer learning and data augmentation (CNN-TL&DA) greatly improved the prediction results and overcame over-fitting. Furthermore, we compared the ML/DL modeling methods and found that the CNN-TL&DA, which combined molecular images (MI), achieved the best overall performance (R2test = 0.896, RMSEtest = 0.362, MAEtest = 0.261) when compared to the XGBoost algorithm combined with Mordred descriptors (MD) (0.692, RMSEtest = 0.622, MAEtest = 0.399) and Morgan fingerprint (MF) (R2test = 0.512, RMSEtest = 0.783, MAEtest = 0.520). Moreover, the interpretation of the MD-XGBoost and MF-XGBoost models using the SHAP method revealed the significance of MDs (e.g., molecular size, branching, electron distribution, polarizability, and bond types), MFs (e.g, aromatic carbon, carbonyl oxygen, nitrogen, and halogen) and environmental conditions (e.g., pH) that effectively influence the keaq- prediction. The interpretation of the 2D molecular image-CNN (MI-CNN) models using the Grad-CAM method showed that they correctly identified key functional groups such as -CN, -NO2, and -X functional groups that can increase the keaq- values. Additionally, almost all electron-withdrawing groups and a small part of electron-donating groups for the MI-CNN model can be highlighted for estimating keaq-. Overall, our results suggest that the CNN approach has smaller errors when compared to ML algorithms, making it a promising candidate for predicting other rate constants.


Assuntos
Aprendizado Profundo , Elétrons , Redes Neurais de Computação , Aprendizado de Máquina , Algoritmos
5.
Sci Total Environ ; 880: 163054, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36963691

RESUMO

The synergistic activation of persulfate by multiple factors could degrade pollutants more efficiently. However, the co-activation method based on metal ions has the risk of leakage. The non-metallic coupling method could achieve the same efficiency as the metal activation and meanwhile release environmental stress. In this study, the original biochar (BC) was prepared through using Chinese medicinal residue of Acanthopanax senticosus as the precursor. Compared with other biochar, the pore size structure was higher and toxicity risk was lower. The ultrasonic (US)/Acanthopanax senticosus biochar (ASBC)/persulfate oxidation system was established for Atrazine (ATZ). Results showed that 45KHz in middle and low frequency band cooperated with ASBC600 to degrade nearly 70 % of ATZ within 50 min, and US promoted the formation of SO4- and OH. Meanwhile, the synergy index of US and ASBC was calculated to be 1.18, which showed positive synergistic effect. Finally, the potential toxicity was examined by using Toxicity Characteristic Leaching Procedure (TCLP) and luminescent bacteria. This study provides a promising way for the activation of persulfate, which is expected to bring a new idea for the win-win situation of pollutant degradation and solid waste resource utilization.


Assuntos
Atrazina , Eleutherococcus , Poluentes Químicos da Água , Atrazina/toxicidade , Atrazina/análise , Medicina Tradicional Chinesa , Metais , Carvão Vegetal/química , Poluentes Químicos da Água/análise
6.
J Environ Manage ; 329: 116904, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528943

RESUMO

The apparent second-order rate constant with hexavalent ferrate (Fe(VI)) (kFe(VI)) is a key indicator to evaluate the removal efficiency of a molecule by Fe(VI) oxidation. kFe(VI) is often determined by experiment, but such measurements can hardly catch up with the rapid growth of organic compounds (OCs). To address this issue, in this study, a total of 437 experimental second-order kFe(VI) rate constants at a range of conditions (pH and temperature) were used to train four machine learning (ML) algorithms (lasso regression (LR), ridge regression (RR), extreme gradient boosting (XGBoost), and the light gradient boosting machine (LightGBM)). Using the Morgan fingerprint (MF)) of a range of organic compounds (OCs) as the input, the performance of the four algorithms was comprehensively compared with respect to the coefficient of determination (R2) and root-mean-square error (RMSE). It is shown that the RR, XGBoost, and LightGBM models displayed generally acceptable performance kFe(VI) (R2test > 0.7). In addition, the shapely additive explanation (SHAP) and feature importance methods were employed to interpret the XGBoost/LightGBM and RR models, respectively. The results showed that the XGBoost/LightGBM and RR models suggestd pH as the most important predictor and the tree-based models elucidate how electron-donating and electron-withdrawing groups influence the reactivity of the Fe(VI) species. In addition, the RR model share eight common features, including pH, with the two tree-based models. This work provides a fast and acceptable method for predicting kFe(VI) values and can help researchers better understand the degradation behavior of OCs by Fe(VI) oxidation from the perspective of molecular structure.


Assuntos
Ferro , Poluentes Químicos da Água , Cinética , Ferro/química , Oxirredução , Água , Compostos Orgânicos , Poluentes Químicos da Água/química
7.
Sci Total Environ ; 855: 158849, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36122730

RESUMO

In order to promote low-carbon sustainable operational management of the wastewater treatment plants (WWTPs), automatic control and optimal operation technologies, which devote to improving effluent quality, operational costs and greenhouse gas (GHG) emissions, have flourished in recent years. There is no consensus on the design procedure for optimal control/operation of sustainable WWTPs. In this review, we summarize recent researches on developing control and optimization strategies for GHG mitigation in WWTPs. Faced with the fact that direct carbon dioxide (CO2) emissions (considered biological origin) are generally not included in the carbon footprint of WWTPs, direct emissions (nitrous oxide (N2O), methane (CH4)) and indirect emissions are paid much attention. Firstly, the plant-wide models with GHG dynamic simulation, which are employed to design and evaluate the automatic control schemes as well as representative studies on identifying key factors affecting GHG emissions or comprehensive performance are outlined. Then, both traditional and advanced control methods commonly used in GHG mitigation are reviewed in detail, followed by the multi-objective optimization practices of control/operational parameters. Based on the mentioned control and (or) optimization strategies, a novel design framework for the optimal control/operation of sustainable WWTPs is proposed. The findings and design framework proposed in the paper will provide guidance for GHG mitigation and sustainable operation in WWTPs. It is foreseeable that more accurate and appropriate plant-wide models together with flexible control methods and intelligent optimization strategies will be developed to satisfy the upgrading requirements of WWTPs in the future.


Assuntos
Gases de Efeito Estufa , Purificação da Água , Efeito Estufa , Eliminação de Resíduos Líquidos/métodos , Óxido Nitroso/análise
8.
J Hazard Mater ; 438: 129411, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35780739

RESUMO

Supplying conductive materials (CMs) into anaerobic bioreactors is considered as a promising technology for antibiotic wastewater treatment. However, whether and how CMs influence antibiotic resistance genes (ARGs) spread remains poorly known. Here, we investigated the effects of three CMs, i.e., magnetite, activated carbon (AC), and zero valent iron (ZVI), on ARGs dissemination during treating sulfamethoxazole wastewater, by dissecting the shifts of physiological features and microbial community. With the addition of magnetite, AC, and ZVI, the SMX removal was improved from 49.05 to 71.56-92.27 %, while the absolute abundance of ARGs reducing by 26.48 %, 61.95 %, 48.45 %, respectively. The reduced mobile genetic elements and antibiotic resistant bacteria suggested the inhibition of horizontal and vertical transfer of ARGs. The physiological features, including oxidative stress response, quorum sensing, and secretion system may regulate horizontal transfer of ARGs. The addition of all CMs relieved oxidative stress compared with no CMs, but ZVI may cause additional free radicals that needs to be concerned. Further, ZVI and AC also interfered with cell communication and secretion system. This research deepens the insights about the underlying mechanisms of CMs in regulating ARGs, and is expected to propose practical ways for mitigating ARGs proliferation.


Assuntos
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Óxido Ferroso-Férrico/farmacologia , Ferro/farmacologia , Sulfametoxazol/farmacologia , Águas Residuárias/microbiologia
9.
J Hazard Mater ; 423(Pt B): 127248, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34560488

RESUMO

The fate of antibiotics in activated sludge has attracted increasing interests. However, the focus needs to shift from concerning removal efficiencies to understanding mechanisms and sludge responding to antibiotic toxicity. Herein, we operated two anaerobic sequencing batch reactors (ASBRs) for 200 days with sulfadiazine (SDZ) and sulfamethoxazole (SMX) added. The removal efficiency of SMX was higher than that of SDZ. SDZ was removed via adsorption (9.91-21.18%) and biodegradation (10.20-16.00%), while biodegradation (65.44-86.26%) was dominant for SMX removal. The mechanisms involved in adsorption and biodegradation were investigated, including adsorption strength, adsorption sites and the roles of enzymes. Protein-like substance (tryptophan) functioned vitally in adsorption by forming complexes with sulfonamides. P450 enzymes may catalyze sulfonamides degradation via hydroxylation and desulfurization. Activated sludge showed distinct responses to different sulfonamides, reflected in the changes of microbial communities and functions. These responses were related to sulfonamides removal, corresponding to the stronger adsorption capacity of activated sludge in ASBR-SDZ and degradation capacity in ASBR-SMX. Furthermore, the reasons for different removal efficiencies of sulfonamides were analyzed according to steric and electronic effects. These findings propose insights into antibiotic removal and broaden the knowledge for self-protection mechanisms of activated sludge under chronic toxicities of antibiotics.


Assuntos
Esgotos , Sulfonamidas , Anaerobiose , Antibacterianos , Sulfadiazina , Sulfametoxazol
10.
Water Res ; 205: 117672, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34563930

RESUMO

Antibiotics can exert selective pressures on sludge as well as affect the emergence and spread of antibiotic resistance genes (ARGs). However, the underlying mechanisms of ARGs transfers are still controversial and not fully understood in sludge system. In present study, two anaerobic sequence batch reactors (ASBR) were constructed to investigate the development of ARGs exposed to two sulfonamide antibiotics (SMs, sulfadiazine SDZ and sulfamethoxazole SMX) with increasing concentrations. The abundance of corresponding ARGs and total ARGs obviously increased with presence of SMs. Functional analyses indicated that oxidative stress response, signal transduction and type IV secretion systems were triggered by SMs, which would promote ARGs transfers. Network analysis revealed 18 genera were possible hosts of ARGs, and their abundances increased with SMs. Partial least-squares path modeling suggested functional modules directly influenced mobile genetic elements (MGEs) as well as the ARGs might be driven by both functional modules and bacteria community, while bacteria community composition played a more key role. Sludge with refractory antibiotics (SDZ) may stimulate the relevant functions and shift the microbial composition to a greater extent, causing more ARGs to emerge and spread. The mechanisms of ARGs transfers are revealed from the perspective of functional modules and bacterial community in sludge system for the first time, and it could provide beneficial directions, such as oxidative stress reduction, cellular communication control, bacterial composition directional regulation, for ARGs spread controlling in the future.


Assuntos
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Esgotos
11.
Environ Sci Technol ; 55(18): 12640-12651, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34464118

RESUMO

Herein, we report that Co(II)-doped g-C3N4 can efficiently trigger peracetic acid (PAA) oxidation of various sulfonamides (SAs) in a wide pH range. Quite different from the traditional radical-generating or typical nonradical-involved (i.e., singlet oxygenation and mediated electron transfer) catalytic systems, the PAA activation follows a novel nonradical pathway with unprecedented high-valent cobalt-oxo species [Co(IV)] as the dominant reactive species. Our experiments and density functional theory calculations indicate that the Co atom fixated into the nitrogen pots of g-C3N4 serves as the main active site, enabling dissociation of the adsorbed PAA and conversion of the coordinated Co(II) to Co(IV) via a unique two-electron transfer mechanism. Considering Co(IV) to be highly electrophilic in nature, different substituents (i.e., five-membered and six-membered heterocyclic moieties) on the SAs could affect their nucleophilicity, thus leading to the differences in degradation efficiency and transformation pathway. Also, benefiting from the selective oxidation of Co(IV), the established oxidative system exhibits excellent anti-interference capacity and achieves satisfactory decontamination performance under actual water conditions. This study provides a new nonradical approach to degrade SAs by efficiently activating PAA via heterogeneous cobalt-complexed catalysts.


Assuntos
Cobalto , Ácido Peracético , Antibacterianos , Oxirredução , Sulfonamidas
12.
J Colloid Interface Sci ; 602: 1-13, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34118599

RESUMO

Carbon quantum dots (CQDs) doping semiconductors can boost solar-to-hydrogen conversion and the photodegradation in VIS-NIR light, therefore attract great attention, but the perspective of CQDs role is seldom explored. Here, a biomass-CQDs was assembled with BiOCl (CQDs/BiOCl), then served as the visible-photodegradation model for a mechanistic investigation. Furthermore, CQDs/BiOCl removed 90% bisphenol A (BPA) within 2 h under visible light. It was attributed to the C-localized state (CLS) produced by CQDs, which transfers forceless photo-electrons (e-) to generate holes (h+) in the CQDs/BiOCl valence band (VB) under visible light, the h+ mainly involved in the BPA degradation process. Then, the electrochemical experiments and theoretical calculations further proved that the efficiencies of charge separation (ηCS) and injection (ηCI) were proved by CQDs. Meanwhile, the possible BPA degradation pathways were accordingly proposed, and the ecotoxicity evaluation of the intermediates was also conducted by ECOSAR. The transformation pathways of BPA were divided into five orientations, and the toxicity of intermediates was decreased for Fish (LC50, ChV), Daphnid (LC50, ChV), Algae (EC50, ChV) except for P10 and P12. As the result, this study confirmed the feasibility of bio-CQDs/BiOCl preparation and it could be a photocatalyst to remove and detoxify BPA under visible light.


Assuntos
Pontos Quânticos , Compostos Benzidrílicos , Carbono , Catálise , Luz , Fenóis
13.
Water Res ; 201: 117313, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119969

RESUMO

The combination of Co(II) and peracetic acid (PAA) is a promising advanced oxidation process for the abatement of refractory organic contaminants, and acetylperoxy (CH3CO3•) and acetoxyl (CH3CO2•) radicals are generally recognized as the dominant and selective intermediate oxidants. However, the role of high-valent cobalt-oxo species [Co(IV)] have been overlooked. Herein, we confirmed that Co(II)/PAA reaction enables the generation of Co(IV) at acidic conditions based on multiple lines of evidences, including methyl phenyl sulfoxide (PMSO)-based probe experiments, 18O isotope-labeling technique, and in situ Raman spectroscopy. In-depth investigation reveals that the PAA oxidation mechanism is strongly pH dependent. The elevation of solution pH could induce major oxidants converting from Co(IV) to oxygen-centered radicals (i.e., CH3CO3• and CH3CO2•). The presence of H2O2 competitively consumes both Co(IV) and reactive radicals generated from Co(II)/PAA process, and thus, leading to an undesirably decline in catalytic performance. Additionally, as a highly reactive and selective oxidant, Co(IV) reacts readily with organic substances bearing electron-rich groups, and efficiently attenuating their biological toxicity. Our findings enrich the fundamental understanding of Co(II) and PAA reaction and will be useful for the application of Co(IV)-mediated processes.


Assuntos
Cobalto , Ácido Peracético , Peróxido de Hidrogênio , Oxidantes , Oxirredução
14.
J Hazard Mater ; 417: 126008, 2021 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-33979707

RESUMO

Polymeric carbon nitride (PCN) has become a star material either in photocatalysis or in persulfate (PS) activation. In this work, we synthesized bifunctional biochar (BC)-doped PCN through a facile one-pot thermal treatment process. The PCN/BC hybrid (CNBC) with an optimized proportion could not only activate PS directly, but also possessed improved optical properties. Amorphous BC domains generated from the carbonization of external corncob provided attachments for the in-situ growth of PCN and upgraded its catalytic ability including electron transport property, visible light (VIS) utilization, and oxidation power. Mechanism studies demonstrated that in the CNBC/PS system without VIS, a nonradical electron transfer route was responsible for the degradation of bisphenol A (BPA), while in the CNBC/PS/VIS system, radical/nonradical mixing mechanisms including mediated electron transfer, radical oxidation, and hole oxidation were unveiled. Degradation pathways of BPA were deduced including direct oxidation at the aromatic ring, ß-scission of isopropyl, and ring cleavage. Most of the intermediates were less toxic than BPA as assessed by the ECOSAR software. The CNBC/PS/VIS system showed satisfactory resistance to environmental interferences except for HCO3-. This work provides a simple but effective strategy for the synthesis of PCN-based bifunctional catalysts and deepens mechanistic insights into hybrid advanced oxidation technologies.


Assuntos
Poluentes Químicos da Água , Compostos Benzidrílicos , Carvão Vegetal , Luz , Nitrilas , Fenóis , Poluentes Químicos da Água/análise
15.
J Hazard Mater ; 416: 125679, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33823482

RESUMO

The reaction between Co(II) and PMS is an appealing advanced oxidation process (AOP), where multiple reactive oxidizing species (ROS) including high-valent cobalt-oxo [Co(IV)], sulfate radical (SO4•-), and hydroxy radical (•OH) are intertwined together for degrading pollutants. However, the relative contribution of various ROS and the influences of nontarget matrix constituents, on the degradation process are still unclear and yet to be answered. In this study, we confirmed the generation Co(IV) as dominant intermediate oxidant at acid medium by using methyl phenyl sulfoxide (PMSO) as a probe compound. Using chemical scavenging methods, the role of SO4•- and •OH was also identified, and the major ROS were converted from Co(IV) to radical species with the increase of PMS/Co(II) molar ratio as well as pH value. In addition, we found that their contributions to the abatement of organic contaminants are highly dependent on both their available amount and substrate-specific reactivity. Generally, organic substrates with low ionization potential (IP) are prone to react with Co(IV). More interestingly, in contrast to radical-based oxidation, Co(IV) exhibited the great resistance to humic acid (HA) and background ions. This study might shed new light on the PMS activation by cobalt(II) for degradation of organic contaminants.


Assuntos
Cobalto , Peróxidos , Radical Hidroxila , Oxirredução
16.
J Hazard Mater ; 398: 122768, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32768854

RESUMO

Cobalt-mediated activation of peroxymonosulfate (PMS) has been extensively investigated for the degradation of emerging organic pollutants. In this study, PMS activation via cobalt-impregnated biochar towards atrazine (ATZ) degradation was systematically examined, and the underlying reaction mechanism was explicated. It was found that persistent free radicals (PFRs) contained in biochar play a pivotal role in PMS activation process. The PFRs enabled an efficient transfer electron to both cobalt atom and O2, facilitating the recycle of Co(III)/Co(II), and thereby leaded to an excellent catalytic performance. In contrast to oxic condition, the elimination of dissolved oxygen significantly retarded the ATZ degradation efficiency from 0.76 to 0.36 min-1. Radical scavenging experiments and electron paramagnetic resonance (EPR) analysis confirmed that the ATZ degradation was primarily due to SO4·- and, to a lesser extent, ·OH. In addition, dual descriptor (DD) method was carried out to reveal reactive sites on ATZ for radicals attacking and predicted derivatives. Meanwhile, the possible ATZ degradation pathways were accordingly proposed, and the ecotoxicity evaluation of the oxidation intermediates was also conducted by ECOSAR. Consequently, the cobalt-impregnated biochar could be an efficient and environmentally friendly catalyst to activate PMS for abatement and detoxication of ATZ.


Assuntos
Atrazina , Poluentes Químicos da Água , Atrazina/toxicidade , Carvão Vegetal , Cobalto/toxicidade , Radicais Livres , Peróxidos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
17.
Water Res ; 160: 405-414, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31163316

RESUMO

N-doped biochars (NBCs) were prepared by pyrolyzing corncob biomass and urea in different proportion which manifested superior catalytic performance of peroxydisulfate (PDS) activation for sulfadiazine (SDZ) degradation. Through both dynamic fitting and density functional theory (DFT) calculations, the critical role of edge nitrogenation in biochar (BC) structure was revealed for the first time. The incorporation of edge nitrogen configurations (pyridinic N and pyrrolic N rather than graphitic N) generated reactive sites for the PDS activation. Additionally, a thorough investigation was conducted to explicate the PDS activation mechanism by NBC through chemical quenching experiments, electron spin resonance (ESR) detection, oxidant consumption monitoring and electrochemical analysis. Different from the well-reported singlet oxygen (1O2) dominated nonradical mechanism, an electron transfer pathway involving surface-bound reactive complexes was proved to play a major role in the NBC/PDS system. Benefit from the electron transfer mechanism, the NBC/PDS system not only has wide pH adaptation for real application, but also shows high resistance to the inorganic anions in aquatic environment. We believe this study will deepen the understanding of the carbon-driven persulfate activation mechanism and provide strong technical support for the BC-mediated persulfate activation in practical applications.


Assuntos
Elétrons , Grafite , Catálise , Carvão Vegetal
18.
Ecotoxicol Environ Saf ; 163: 656-664, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30098555

RESUMO

In this study, a new core-shell material (CMCS) is prepared with magnesium oxide (MgO) around calcium silicate hydrate (CSH), and CSH is prepared by SiO2 from the red mud. The CMCS simultaneously removes ammonia nitrogen (NH4+) and phosphate (PO43-) by chemical precipitation and it can achieve recovery of nitrogen and phosphorus. The removal process of NH4+ and PO43- is as follows. First, the shell of MgO is used to remove NH4+ and a part of the PO43- by the assisted adsorption and struvite (MgNH4PO4·6H2O) precipitation method. Then the CSH is used to remove the residual part of PO43- by chemical precipitation (Ca5(PO4)3OH, CaHPO4 and Ca3(PO4)2). Furthermore, the MgO shell of CMCS not only removes NH4+ and PO43-, but also can control the calcium ions (Ca2+) spill from CSH and pH in the process of removing NH4+ and PO43-. The removal rate of NH4+ and PO43- can reach 76.63% and 87.18%, respectively, in the solution in 80 min, but in the actual wastewater the removal rate of NH4+ and PO43- is 61.40% and 62.83%, respectively. Finally, CMCS was recycled five times and its removal rates of NH4+ and PO43- are 21.01% and 24.99%, respectively. The aim of this article is to present CMCS, which has a good effect on removing the NH4+ and PO43- simultaneously.


Assuntos
Compostos de Cálcio/química , Magnésio/química , Silicatos/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Precipitação Química , Magnésio/análise , Nitrogênio/análise , Nitrogênio/química , Fósforo/análise , Fósforo/química , Estruvita/química , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...