Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(43): 28630-28641, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34746558

RESUMO

Naringin (NAR), a naturally occurring essential flavonoid, present in grapefruit and Chinese herbal medicines, creates great interest in researchers due to its diverse biological and pharmacological activities. However, further development of NAR is hindered due to its poor water solubility and dissolution rates in GIT. To address these limitations, in this study, we report polymeric nanoparticles (NPs) of NAR (NAR-PLGA-NPs) for enhancing the oral NAR efficiency, with a biodegradable polymer (PLGA) to improve its absorption and bioavailability. NAR-PLGA-NPs were fabricated by a modified solvent emulsification-evaporation technique. Physicochemical properties were evaluated by SEM, particle size distribution, entrapment efficiency, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). In vitro drug release and ex vivo permeation studies were carried out in phosphate buffer (pH 6.8) for 24 h. Furthermore, in vivo anti-arthritic studies were performed on a mouse model, and the results were compared with free NAR. The modulation of inflammatory mediators was also evidently supported by docking studies. Optimized nanoformulation FN4 (NAR-PLGA-NPs) prepared with acetone-ethanol (2:1) as a solvent system in a combination of stabilizers, i.e., poloxamer-188 and sodium deoxylate (1:1), along with 2% PVA solution, was prepared. From size characterization studies, it was observed that nanoformulations possessed a low particle size (179.7 ± 2.05 nm), a low polydispersity index (0.206 ± 0.001), and a negative zeta potential (-9.18 ± 0.78 mV) with a maximum entrapment efficiency (74 ± 3.61%). The drug release followed a Korsmeyer-Peppas release kinetic model (anomalous non-Fickian diffusion), providing greater NAR release after lyophilization (82.11 ± 3.65%) drug release in pH 6.8 phosphate buffer for 24 h. Ex vivo permeation analysis through an isolated goat intestinal membrane revealed 80.02 ± 3.69% drug release in 24 h. Encapsulation of a drug into PLGA is well described by the results of FTIR, DSC, and XRD. Finally, the therapeutic efficacy of optimized FN4 (NAR-PLGA-NPs) and its possible application on RA were further confirmed in a Freund's complete adjuvant-induced rat arthritic model as against free NAR at a dose of 20 mg/kg body wt. Our findings demonstrate that sustained action of NAR from optimized FN4 NPs with a rate-controlling polymeric carrier system exhibited prolonged circulation time and reduced arthritic inflammation, hence indicating the possibility as a novel strategy to secure the unpropitious biological interactions of hydrophobic NAR in a gastric environment.

3.
ACS Omega ; 5(43): 28319-28332, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33163815

RESUMO

Combination of drugs is extensively used to treat chronic inflammatory disease. Naringin (NAR), sulforaphane (SFN), and phenethyl isothiocyanate (PEITC) are nutraceuticals with promising anti-inflammatory properties. However, their clinical effectiveness gets hindered because of low aqueous solubility and poor bioavailability. In the current study, two combinations of liposome (NAR + SFN and NAR + PEITC) were prepared and studied thoroughly in different in vivo models of acute and chronic models of inflammation. The encapsulation efficiency of NAR, SFN, and PEITC in the combination liposomal formulations (CLFs) prepared with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/cholesterol/1,2-distearoyl-sn-glycero-3-phosphoethanolamine -020CN (15:4:1 M ratio) was determined to be 79.8 ± 4.2, 46.5 ± 3.6, and 78.5 ± 3.2%, respectively. The CLFs were characterized by differential scanning calorimetry, X-ray diffraction, dynamic light scattering, and Fourier transform infrared spectroscopy. The physicochemical results showed that the preparations were monodisperse (PDI 0.062-0.248) in water with an average size from 140.5 to 165.6 nm and a zeta potential of -47.3 to -53.3 mV. Dissolution studies in vitro showed a slower release of PEITC (>90%, 6 h) in comparison to that of SFN (3 h). Here, we are the first to report the antiarthritic activity of CLF of NAR + SFN and NAR + PEITC in the Freund's complete adjuvant (FCA)-induced arthritic model. At an intraperitoneal dose (375 + 375 µg/mL) for 3 weeks, the NAR + PEITC liposome significantly improves both % paw edema and arthritic score compared to their free drug combinations in FCA rats. Most importantly, hematological and biochemical results showed improved anemic conditions with significant changes in the SGOT, SGPT, and ALP levels. The ELISA results showed similar trends of increased cytokine (IL-10) and decreased inflammation markers (TNF-α, IL-6, IFN-γ). Histological evaluations showing reduction in cell infiltration, pannus formation, and bone and cartilage destruction further confirm and validate the antiarthritic activity of the CLF. This comprehensive study reveals the effectiveness of combination liposomes of poorly soluble anti-inflammatory molecules (NAR, SFN, PEITC) in the treatment of arthritis.

4.
Heliyon ; 6(8): e04663, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32904164

RESUMO

Fungal skin infections are the most common global issue for skin health. Fungal infections are often treated by topical or systemic anti-fungal therapy. Topical fungal therapy is usually preferred because of their targeted therapy and fewer side effects. Advanced topical carriers because of their distinct structural and functional features, overcome biopharmaceutical challenges associated with conventional drug delivery systems like poor retention and low bioavailability. Literature evidence indicated topical nanocarriers loaded with anti-fungal agents display superior therapeutic response with minimum toxicity. Nanocarriers often used for topical anti-fungal medication includes Solid-Lipid nanoparticles, Microemulsions, Liposomes, Niosomes, Microsponge, Nanogel, Nanoemulsion, Micelles etc. This review summarizes recent advances in novel strategies employed in topical carriers to improve the therapeutic performance of anti-fungal drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...