Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 381(6665): 1468-1474, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37769102

RESUMO

3D printing of inorganic materials with nanoscale resolution offers a different materials processing pathway to explore devices with emergent functionalities. However, existing technologies typically involve photocurable resins that reduce material purity and degrade properties. We develop a general strategy for laser direct printing of inorganic nanomaterials, as exemplified by more than 10 semiconductors, metal oxides, metals, and their mixtures. Colloidal nanocrystals are used as building blocks and photochemically bonded through their native ligands. Without resins, this bonding process produces arbitrary three-dimensional (3D) structures with a large inorganic mass fraction (~90%) and high mechanical strength. The printed materials preserve the intrinsic properties of constituent nanocrystals and create structure-dictated functionalities, such as the broadband chiroptical responses with an anisotropic factor of ~0.24 for semiconducting cadmium chalcogenide nanohelical arrays.

2.
ACS Nano ; 17(3): 2792-2801, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36651568

RESUMO

Self-assembled inorganic nanocrystal (NC) superlattices are powerful material platforms with diverse structures and emergent functionalities. However, their applications suffer from the low structural stability against solvents and other stimuli, due to the weak interparticle interactions. Existing strategies to stabilize NC superlattices typically require the design and incorporation of special ligands prior to self-assembly and are only applicable to superlattices of certain NCs, ligands, and structures. Here we report a general method to stabilize superlattices of various NC compositions and structures via strong, covalently bonded ligands. The core is the use of light-triggered, nitrene-based cross-linkers that do not interfere the self-assembly process while nonspecifically and effectively bonding the native ligands of NCs. The stabilized 2D and 3D superlattices of metal, semiconductor, and magnetic NCs retain their structures when being exposed to solvents of different polarities (from toluene to water) and show high thermal stability and mechanical rigidity. This can further stabilize binary NC superlattices, beyond those achievable in previous methods. Stabilized superlattices show robust and reproducible functionalities, for instance, when serving as reusable substrates for surface enhanced Raman spectroscopy. These results create more possibilities in exploiting the impressive library of NC superlattices in a broad scope of applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...