Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(47): 44708-44716, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38046315

RESUMO

The present work focuses on the surface coating of VAR technical fibers, consisting of 64% viscose (cellulose), 24% Kevlar, 10% other types of polyamides, and 2% antistatic polymers. Kevlar is an aramid material exhibiting excellent mechanical properties, while cellulose is a natural linear polymer composed of repeating ß-d-glucose units, having several applications in the materials industry. Herein, we synthesized novel, tailor-designed organic molecules possessing functional groups able to anchor on VAR fabrics and cellulose materials, thus altering their properties on demand. To this end, we utilized methyl-α-d-glucopyranose as a model compound, both to optimize the reaction conditions, before applying them to the material and to understand the chemical behavior of the material at the molecular level. The efficient coating of the VAR fabric with the tailor-made compounds was then implemented. Thorough characterization studies using Raman and IR spectroscopies as well as SEM imaging and thermogravimetric analysis were also carried out. The wettability and water repellency and antibacterial properties of the modified VAR fabrics were also investigated in detail. To the best of our knowledge, such an approach has not been previously explored, among other factors regarding the understanding of the anchoring mechanism at the molecular level. The proposed modification protocol holds the potential to improve the properties of various cellulose-based materials beyond VAR fabrics.

2.
Molecules ; 28(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37513342

RESUMO

The surface modification of fabrics composed of Kevlar®, Nomex®, or VAR was extensively investigated. Kevlar® and Nomex® are widely-utilized aramid materials, whereas VAR is a technical fabric comprising 64% viscose, 24% para-aramid (Kevlar®), 10% polyamide, and 2% antistatic fibers. Both aramid materials and cellulose/viscose exhibit exceptional mechanical properties that render them valuable in a wide range of applications. For the herein studied modification of Kevlar®, Nomex®, and VAR, we used small organic molecules 3-allyl-5,5-dimethylhydantoin (ADMH) and 3-(acrylamidopropyl)trimethylammonium chloride (APTAC), which were anchored onto the materials under study via graft polymerization. By doing so, excellent antibacterial properties were induced in the three studied fabrics. Their water repellency was improved in most cases as well. Extensive characterization studies were conducted to probe the properties of the modified materials, employing Raman and FTIR spectroscopies, Scanning Electron Microscopy (SEM), and thermogravimetric analysis (TGA).

3.
Chemistry ; 29(51): e202301400, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37376954

RESUMO

This work describes a multi-step modification process for the covalent transformation of Kevlar fabric en route to the incorporation of graphene oxide (GO) nanosheets. Spectroscopic, thermal and microscopy imaging techniques have been employed to follow step-by-step the modification of Kevlar and the formation of the corresponding Kevlar-GO hybrid fabric. The level of Kevlar's functionalization can be controlled with the nitration time, the first reaction in the multi-sequence organic transformations, for obtaining the hybrid fabric with a content of GO up to 30 %. Most importantly, the covalent post-modification of Kevlar does not occur in the expense of the other excellent mechanical properties of the fabric. Under optimal conditions, the Kevlar-GO hybrid fabric shows a 20 % enhancement of the ultimate strength. Notably, when the Kevlar-GO hybrid fabric was exposed to cyanobacterial Synechococcus the bacteria growth was fully inhibited. Overall, the covalently modified fabric demonstrated significant antibacterial behavior, excellent strength and stability under common processes. Due to its simplicity, the methodology presented in this work not only promises to result in a standard procedure to functionalize the mer units of Kevlar with a variety of chemicals and nanomaterials but it can be also extended for the modification and hybridization of other fabrics.


Assuntos
Grafite , Nanoestruturas , Grafite/química , Nanoestruturas/química , Antibacterianos/farmacologia , Antibacterianos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...