Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(3): 101633, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35077711

RESUMO

Most transcription factors possess at least one long intrinsically disordered transactivation domain that binds to a variety of coactivators and corepressors and plays a key role in modulating the transcriptional activity. Despite the crucial importance of these domains, the structural and functional basis of transactivation remains poorly understood. Here, we focused on activating transcription factor 4 (ATF4)/cAMP response element-binding protein-2, an essential transcription factor for cellular stress adaptation. Bioinformatic sequence analysis of the ATF4 transactivation domain sequence revealed that the first 125 amino acids have noticeably less propensity for structural disorder than the rest of the domain. Using solution nuclear magnetic resonance spectroscopy complemented by a range of biophysical methods, we found that the isolated transactivation domain is predominantly yet not fully disordered in solution. We also observed that a short motif at the N-terminus of the transactivation domain has a high helical propensity. Importantly, we found that the N-terminal region of the transactivation domain is involved in transient long-range interactions with the basic-leucine zipper domain involved in DNA binding. Finally, in vitro phosphorylation assays with the casein kinase 2 show that the presence of the basic-leucine zipper domain is required for phosphorylation of the transactivation domain. This study uncovers the intricate coupling existing between the transactivation and basic-leucine zipper domains of ATF4, highlighting its potential regulatory significance.


Assuntos
Fator 4 Ativador da Transcrição , Caseína Quinase II , Zíper de Leucina , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Fosforilação , Ativação Transcricional
2.
J Vis Exp ; (172)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34279503

RESUMO

High-pressure is a well-known perturbation method that can be used to destabilize globular proteins and dissociate protein complexes in a reversible manner. Hydrostatic pressure drives thermodynamical equilibria toward the state(s) with the lower molar volume. Increasing pressure offers, therefore, the opportunities to finely tune the stability of globular proteins and the oligomerization equilibria of protein complexes. High-pressure NMR experiments allow a detailed characterization of the factors governing the stability of globular proteins, their folding mechanisms, and oligomerization mechanisms by combining the fine stability tuning ability of pressure perturbation and the site resolution offered by solution NMR spectroscopy. Here we present a protocol to probe the local folding stability of a protein via a set of 2D 1H-15N experiments recorded from 1 bar to 2.5 kbar. The steps required for the acquisition and analysis of such experiments are illustrated with data acquired on the RRM2 domain of hnRNPA1.


Assuntos
Dobramento de Proteína , Pressão Hidrostática , Espectroscopia de Ressonância Magnética , Pressão , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...