Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 212: 255-270, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38122872

RESUMO

Reactive oxygen and nitrogen species (RONS) are a range of chemical individuals produced by living cells that contribute to the proper functioning of organisms. Cells under oxidative and nitrative stress show excessive production of RONS (including hydrogen peroxide, H2O2, hypochlorous acid, HOCl, and peroxynitrite, ONOO-) which may result in a damage proteins, lipids, and genetic material. Thus, the development of probes for in vivo detection of such oxidants is an active area of research, focusing on molecular redox sensors, including boronate-caged fluorophores. Here, we report a boronate-based styryl probe with a cationic pyridinium moiety (BANEP+) for the fluorescent detection of selected biological oxidants in vitro and in vivo. We compare the chemical reactivity of the BANEP+ probe toward H2O2, HOCl, and ONOO- and examine the influence of the major intracellular non-enzymatic antioxidant molecule, glutathione (GSH). We demonstrate that, at the physiologically relevant GSH concentration, the BANEP+ probe is efficiently oxidized by peroxynitrite, forming its phenolic derivative HNEP+. GSH does not affect the fluorescence properties of the BANEP+ and HNEP+ dyes. Finally, we report the identification of a novel type of molecular marker, with the boronate moiety replaced by the iodine atom, formed from the probe in the presence of HOCl and iodide anion. We conclude that the reported chemical reactivity and structural features of the BANEP+ probe may be a basis for the development of new red fluorescent probes for in vitro and in vivo detection of ONOO-.


Assuntos
Oxidantes , Ácido Peroxinitroso , Humanos , Ácido Peroxinitroso/metabolismo , Peróxido de Hidrogênio , Corantes Fluorescentes/química , Ácido Hipocloroso , Espécies Reativas de Nitrogênio/química , Inflamação
2.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37834362

RESUMO

Abnormal lipid profile, increased glucose level, and elevated body weight are traditional cardiometabolic risk factors; however, the role of platelets in the development of cardiovascular disease (CVD) is increasingly being highlighted. The aim of this study was to select platelet-related parameters (non-genetic molecular and routine laboratory measurements) that may be associated with increased cardiovascular risk among healthy populations. We evaluated the level of platelet indices, platelet-based inflammatory markers, platelet reactivity parameters, and platelet reactive oxygen species (ROS) generation in relation to selected cardiometabolic risk factors. We noted the association between total cholesterol and LDL cholesterol with platelet aggregation and platelet ROS generation. We found the relationship between triglycerides, glucose, and body mass index with the relatively new multi-inflammatory indices (MII-1 and MII-3). Moreover, we noticed that the mean platelet volume-to-lymphocyte ratio in healthy subjects is not a good source of information about platelets and inflammation. We also highlighted that platelet-to-HDL-cholesterol ratio may be a promising prognostic cardiometabolic indicator. The association between platelet-related (especially molecular) and cardiometabolic parameters requires further research. However, the goal of this study was to shed light on the consideration of platelets as a non-traditional cardiovascular risk factor and a crucial element in identifying individuals at high-risk of developing CVD in the future.


Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/etiologia , Fatores de Risco , Espécies Reativas de Oxigênio , Triglicerídeos , LDL-Colesterol , Fatores de Risco de Doenças Cardíacas , Glucose , HDL-Colesterol
3.
Toxicol In Vitro ; 83: 105407, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35659575

RESUMO

INTRODUCTION: Commercially-available resazurin-based reagents used for cell viability assessment contain varying amounts of resorufin; these may contribute to differences in autofluorescence, signal-to-background (S/B) ratio and the dynamic range of the assay. OBJECTIVES: This in vitro study compares the sensitivity of a new, high-sensitivity PrestoBlue (hs-PB) assay with standard PrestoBlue (PB) in assessing the efficacy of valinomycin and antimycin A in human vascular endothelial EA.hy926 cells, as well as cell viability. METHODS: The metabolic activity of EA.hy926 was evaluated based on resorufin fluorescence (PB assays) or formazan absorbance (MTT assay). RESULTS: The hs-PB assay demonstrated lower resorufin autofluorescence than the PB, resulting in a ≥ 1.4-fold increase in S/B ratio in hs-PB compared to PB. Valinomycin was more potent cytotoxic agent than antimycin A. The hs-PB, PB and MTT produced similar IC50 values for valinomycin. Antimycin A showed significantly higher potency in the MTT than in the resazurin-based assays. The EA.hy926 cells demonstrated higher metabolic activity in the presence of the antimycin A solvent - DMSO. CONCLUSION: All the examined methods may be used interchangeably to analyze drug cytotoxicity. Any differences in drug cytotoxicity observed between the assays may be due to relatively low drug potency and/or the influence of solvent on metabolism of assay reagent. The hs-PB assay appears to more effectively detect cell viability and produce a stronger signal than its conventional counterpart.


Assuntos
Células Endoteliais , Antimicina A/metabolismo , Antimicina A/toxicidade , Sobrevivência Celular , Humanos , Indicadores e Reagentes/farmacologia , Solventes/farmacologia , Valinomicina/metabolismo , Valinomicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...