Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1327010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371928

RESUMO

Bifidobacterium species are essential members of a healthy human gut microbiota. Their presence in the gut is associated with numerous health outcomes such as protection against gastrointestinal tract infections, inflammation, and metabolic diseases. Regular intake of Bifidobacterium in foods is a sustainable way of maintaining the health benefits associated with its use as a probiotic. Owing to their global acceptance, fermented dairy products (particularly yogurt) are considered the ideal probiotic carrier foods. As envisioned in the definition of probiotics as "live organisms," the therapeutic functionalities of Bifidobacterium spp. depend on maintaining their viability in the foods up to the point of consumption. However, sustaining Bifidobacterium spp. viability during the manufacture and shelf-life of fermented dairy products remains challenging. Hence, this paper discusses the significance of viability as a prerequisite for Bifidobacterium spp. probiotic functionality. The paper focuses on the stress factors that influence Bifidobacterium spp. viability during the manufacture and shelf life of yogurt as an archetypical fermented dairy product that is widely accepted as a delivery vehicle for probiotics. It further expounds the Bifidobacterium spp. physiological and genetic stress response mechanisms as well as the methods for viability retention in yogurt, such as microencapsulation, use of oxygen scavenging lactic acid bacterial strains, and stress-protective agents. The report also explores the topic of viability determination as a critical factor in probiotic quality assurance, wherein, the limitations of culture-based enumeration methods, the challenges of species and strain resolution in the presence of lactic acid bacterial starter and probiotic species are discussed. Finally, new developments and potential applications of next-generation viability determination methods such as flow cytometry, propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR), next-generation sequencing, and single-cell Raman spectroscopy (SCRS) methods are examined.

2.
Front Microbiol ; 15: 1325268, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389538

RESUMO

Viability is a prerequisite for any therapeutic benefits associated with the ingestion of probiotic bacteria. Current culture-based techniques are inadequate for the enumeration of probiotics in mixed-species food products. This study utilized a quantitative PCR (qPCR) method coupled with propidium monoazide (PMAxx), and novel species-specific tuf gene primers to selectively enumerate Lacticaseibacillus rhamnosus, Bifidobacterium spp., and yogurt starter cultures in mixed-species probiotic yogurt. The method was optimized for PMAxx concentration and specificity and evaluated for efficiency and applicability. PMAxx-qPCR showed high specificity to the target organisms in mixed-species yogurt, quantifying only viable cells. The linear dynamic ranges were established over five to seven orders of magnitude. The assay was reliable with an efficiency of 91-99%, R2 values > 0.99, and a good correlation to the plate count method (r = 0.882). The results of this study demonstrate the high selectivity, improved lead time, and reliability of PMAxx-qPCR over the culture-dependent method, making it a valuable tool for inline viability verification during processing and improving probiotic quality assurance for processors and consumers.

3.
Microorganisms ; 10(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36013940

RESUMO

Adaptive stress tolerance responses are the driving force behind the survival ability of Listeria monocytogenes in different environmental niches, within foods, and ultimately, the ability to cause human infections. Although the bacterial stress adaptive responses are primarily a necessity for survival in foods and the environment, some aspects of the stress responses are linked to bacterial pathogenesis. Food stress-induced adaptive tolerance responses to acid and osmotic stresses can protect the pathogen against similar stresses in the gastrointestinal tract (GIT) and, thus, directly aid its virulence potential. Moreover, once in the GIT, the reprogramming of gene expression from the stress survival-related genes to virulence-related genes allows L. monocytogenes to switch from an avirulent to a virulent state. This transition is controlled by two overlapping and interlinked transcriptional networks for general stress response (regulated by Sigma factor B, (SigB)) and virulence (regulated by the positive regulatory factor A (PrfA)). This review explores the current knowledge on the molecular basis of the connection between stress tolerance responses and the pathogenesis of L. monocytogenes. The review gives a detailed background on the currently known mechanisms of pathogenesis and stress adaptation. Furthermore, the paper looks at the current literature and theories on the overlaps and connections between the regulatory networks for SigB and PrfA.

4.
Food Res Int ; 100(Pt 2): 150-158, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28888435

RESUMO

This study investigated the effect of acid (pH4.2), osmotic (10% NaCl) and heat (55°C for 30min) stress induced injury on Listeria monocytogenes strains ATCC19115, 69, 159/10 and 243 using differential plating and flow cytometry coupled with membrane integrity indicators, thiazole orange (TO) and propidium iodide (PI) staining. Growth kinetics of injured cells sorted by fluorescence activated cell sorting (FACS) were studied at 4, 25 and 37°C. The percentage of cell injury detectable by both flow cytometry and differential plating varied significantly among strains and stress treatments (p<0.0001). Based on flow cytometry and TO/PI staining, acid stress caused the highest level of injury followed by heat and osmotic stress. Following cell sorting, acid and osmotic stress injured cells were capable of resuscitation and re-growth while heat injured cells (except for strain 69) were incapable of re-growth despite having a high level of membrane intact cells. The lag phase duration (λ) of sorted stress injured cells resuscitated in brain heart infusion (BHI) broth was significantly influenced by strain variations (p<0.0001), stress treatments (p=0.007) and temperature of resuscitation (p≤0.001). Following repair, the maximum specific growth rate (µmax) of resuscitated cells was not different from untreated control cells regardless of strain differences and stress treatments. Only temperature had a significant effect (p<0.0001) on growth rate. Sorted cells were also capable of growth at 4°C, with the time to detectable growth (≥1.40Log10CFUml-1) ranging from 3 to 15days. Overall, re-growth potential of sorted cells showed that while membrane integrity was a good indicator of cell injury and viability loss for acid and osmotic stress, it was not a sufficient indicator of heat stress injury. Once injured cells repair the cellular damage, their growth rate is not different from non-injured cells regardless of form of stress and strain differences. Thus highlighting the potential food safety risks of stress injured L. monocytogenes cells.


Assuntos
Citometria de Fluxo/métodos , Resposta ao Choque Térmico , Listeria monocytogenes/crescimento & desenvolvimento , Pressão Osmótica , Estresse Fisiológico , Contagem de Colônia Microbiana , Meios de Cultura , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Cinética , Viabilidade Microbiana , Ressuscitação , Temperatura
5.
Int J Environ Res Public Health ; 7(6): 2620-37, 2010 06.
Artigo em Inglês | MEDLINE | ID: mdl-20644692

RESUMO

Human enteric viruses are causative agents in both developed and developing countries of many non-bacterial gastrointestinal tract infections, respiratory tract infections, conjunctivitis, hepatitis and other more serious infections with high morbidity and mortality in immunocompromised individuals such as meningitis, encephalitis and paralysis. Human enteric viruses infect and replicate in the gastrointestinal tract of their hosts and are released in large quantities in the stools of infected individuals. The discharge of inadequately treated sewage effluents is the most common source of enteric viral pathogens in aquatic environments. Due to the lack of correlation between the inactivation rates of bacterial indicators and viral pathogens, human adenoviruses have been proposed as a suitable index for the effective indication of viral contaminants in aquatic environments. This paper reviews the major genera of pathogenic human enteric viruses, their pathogenicity and epidemiology, as well as the role of wastewater effluents in their transmission.


Assuntos
Enterovirus/isolamento & purificação , Esgotos/virologia , Microbiologia da Água/normas , Purificação da Água/normas , Abastecimento de Água/normas , Adenoviridae/isolamento & purificação , Surtos de Doenças/prevenção & controle , Desinfetantes , Gastroenterite/prevenção & controle , Humanos , Norovirus/isolamento & purificação , Rotavirus , Infecções por Rotavirus/prevenção & controle , Esgotos/efeitos adversos , Esgotos/microbiologia , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...