Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(5): L052103, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38907505

RESUMO

We show that the action of a dynamical system can be supplemented by an effective action for its environment to reproduce arbitrary coordinate dependent ohmic dissipation and gyroscopic forces. The action is a generalization of the harmonic bath model and describes a set of massless interacting scalar fields in an auxiliary space coupled to the original system at the boundary. A certain limit of the model implements nonholonomic constraints. In the case of dynamics with nonlinearly realized symmetries the effective action takes the form of a two-dimensional nonlinear σ model. It provides a basis for application of path integral methods to general dissipative and nonholonomic systems.

2.
Phys Rev Lett ; 119(21): 211301, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-29219407

RESUMO

We compute the ß functions of marginal couplings in projectable Horava gravity in 2+1 spacetime dimensions. We show that the renormalization group flow has an asymptotically free fixed point in the ultraviolet (UV), establishing the theory as a UV-complete model with dynamical gravitational degrees of freedom. Therefore, this theory may serve as a toy model to study fundamental aspects of quantum gravity. Our results represent a step forward towards understanding the UV properties of realistic versions of Horava gravity.

3.
Phys Rev Lett ; 118(26): 261102, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28707940

RESUMO

We consider the scenario where dark matter (DM) is represented by an ultralight classical scalar field performing coherent periodic oscillations. We point out that such DM perturbs the dynamics of binary systems either through its gravitational field or via direct coupling to ordinary matter. This perturbation gets resonantly amplified if the frequency of DM oscillations is close to a (half-)integer multiple of the orbital frequency of the system and leads to a secular variation of the orbital period. We suggest using binary pulsars as probes of this scenario and estimate their sensitivity. While the current accuracy of observations is not yet sufficient to probe the purely gravitational effect of DM, it already yields constraints on direct coupling that are competitive with other bounds. The sensitivity will increase with the upcoming radio observatories such as the Square Kilometer Array.

4.
Phys Rev Lett ; 112(24): 241602, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24996083

RESUMO

It is shown that a unitary translationally invariant field theory in 1+1 dimensions, satisfying isotropic scale invariance, standard assumptions about the spectrum of states and operators, and the requirement that signals propagate with finite velocity, possesses an infinite dimensional symmetry given by one or a product of several copies of conformal algebra. In particular, this implies the presence of one or several Lorentz groups acting on the operator algebra of the theory.

5.
Phys Rev Lett ; 101(15): 151603, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18999587

RESUMO

We set an upper bound on the gravitational cutoff in theories with exact quantum numbers of large N periodicity, such as Z(N) discrete symmetries. The bound stems from black hole physics. It is similar to the bound appearing in theories with N particle species, though a priori, a large discrete symmetry does not imply a large number of species. Thus, there emerges a potentially wide class of new theories that address the hierarchy problem by lowering the gravitational cutoff due to the existence of large Z(10(32))-type symmetries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...