Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
NPJ Microgravity ; 10(1): 72, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914554

RESUMO

Individuals in isolated and extreme environments can experience debilitating side-effects including significant decreases in fat-free mass (FFM) from disuse and inadequate nutrition. The objective of this study was to determine the strengths and weaknesses of three-dimensional optical (3DO) imaging for monitoring body composition in either simulated or actual remote environments. Thirty healthy adults (ASTRO, male = 15) and twenty-two Antarctic Expeditioners (ABCS, male = 18) were assessed for body composition. ASTRO participants completed duplicate 3DO scans while standing and inverted by gravity boots plus a single dual-energy X-ray absorptiometry (DXA) scan. The inverted scans were an analog for fluid redistribution from gravity changes. An existing body composition model was used to estimate fat mass (FM) and FFM from 3DO meshes. 3DO body composition estimates were compared to DXA with linear regression and reported with the coefficient of determination (R2) and root mean square error (RMSE). ABCS participants received only duplicate 3DO scans on a monthly basis. Standing ASTRO meshes achieved an R2 of 0.76 and 0.97 with an RMSE of 2.62 and 2.04 kg for FM and FFM, while inverted meshes achieved an R2 of 0.52 and 0.93 with an RMSE of 2.84 and 3.23 kg for FM and FFM, respectively, compared to DXA. For the ABCS arm, mean weight, FM, and FFM changes were -0.47, 0.06, and -0.54 kg, respectively. Simulated fluid redistribution decreased the accuracy of estimated body composition values from 3DO scans. However, FFM stayed robust. 3DO imaging showed good absolute accuracy for body composition assessment in isolated and remote environments.

2.
NPJ Microgravity ; 9(1): 11, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737441

RESUMO

Exercise training is a key countermeasure used to offset spaceflight-induced multisystem deconditioning. Here, we evaluated the effects of exercise countermeasures on multisystem function in a large cohort (N = 46) of astronauts on long-duration spaceflight missions. We found that during 178 ± 48 d of spaceflight, ~600 min/wk of aerobic and resistance exercise did not fully protect against multisystem deconditioning. However, substantial inter-individual heterogeneity in multisystem response was apparent with changes from pre to postflight ranging from -30% to +5%. We estimated that up to 17% of astronauts would experience performance-limiting deconditioning if current exercise countermeasures were used on future spaceflight missions. These findings support the need for refinement of current countermeasures, adjunct interventions, or enhanced requirements for preflight physiologic and functional capacity for the protection of astronaut health and performance during exploration missions to the moon and beyond.

3.
NPJ Microgravity ; 8(1): 57, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526672

RESUMO

Astronauts on the International Space Station are exposed to levels of atmospheric carbon dioxide (CO2) above typical terrestrial levels. We explored the possibility that increased levels of ambient CO2 further stimulate bone resorption during bed rest. We report here data from 2 ground-based spaceflight analog studies in which 12 male and 7 female subjects were placed in a strict 6° head-down tilt (HDT) position for either 30 days at 0.5% ambient CO2 or 60 days with nominal environmental exposure to CO2. Bone mineral density (BMD) and bone mineral content (BMC) were determined using dual-energy X-ray absorptiometry (DXA). Blood and urine were collected before and after HDT for biochemical analysis. No change was detected in either BMD or BMC, as expected given the study duration. Bone resorption markers increased after bed rest as expected; however, elevated CO2 had no additive effect. Elevated CO2 did not affect concentrations of minerals in serum and urine. Serum parathyroid hormone and 1,25-dihydroxyvitamin D were both reduced after bed rest, likely secondary to calcium efflux from bone. In summary, exposure to 0.5% CO2 for 30 days did not exacerbate the typical bone resorption response observed after HDT bed rest. Furthermore, results from these strict HDT studies were similar to data from previous bed rest studies, confirming that strict 30-60 days of HDT can be used to evaluate changes in bone metabolism. This is valuable in the continuing effort to develop and refine efficacious countermeasure protocols to mitigate bone loss during spaceflight in low-Earth orbit and beyond.

4.
Sci Rep ; 12(1): 9446, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773442

RESUMO

Determining the extent of bone recovery after prolonged spaceflight is important for understanding risks to astronaut long-term skeletal health. We examined bone strength, density, and microarchitecture in seventeen astronauts (14 males; mean 47 years) using high-resolution peripheral quantitative computed tomography (HR-pQCT; 61 µm). We imaged the tibia and radius before spaceflight, at return to Earth, and after 6- and 12-months recovery and assessed biomarkers of bone turnover and exercise. Twelve months after flight, group median tibia bone strength (F.Load), total, cortical, and trabecular bone mineral density (BMD), trabecular bone volume fraction and thickness remained - 0.9% to - 2.1% reduced compared with pre-flight (p ≤ 0.001). Astronauts on longer missions (> 6-months) had poorer bone recovery. For example, F.Load recovered by 12-months post-flight in astronauts on shorter (< 6-months; - 0.4% median deficit) but not longer (- 3.9%) missions. Similar disparities were noted for total, trabecular, and cortical BMD. Altogether, nine of 17 astronauts did not fully recover tibia total BMD after 12-months. Astronauts with incomplete recovery had higher biomarkers of bone turnover compared with astronauts whose bone recovered. Study findings suggest incomplete recovery of bone strength, density, and trabecular microarchitecture at the weight-bearing tibia, commensurate with a decade or more of terrestrial age-related bone loss.


Assuntos
Voo Espacial , Tíbia , Absorciometria de Fóton , Biomarcadores , Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Humanos , Masculino , Tíbia/diagnóstico por imagem
5.
JBMR Plus ; 6(1): e10550, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35079672

RESUMO

Long-duration spaceflight is associated with an increased risk of urolithiasis, and the pain caused by urinary calculi could result in loss of human performance and mission objectives. The present study investigated the risk of urolithiasis in astronauts during 6 months on the International Space Station, and evaluated whether the suppression of bone resorption by the bisphosphonate, alendronate (ALN), can reduce the risk. A total of 17 astronauts were included into the analysis: exercise using the advanced resistive exercise device (ARED) plus weekly oral 70 mg alendronate (ARED+ALN group, n = 7) was compared to resistive exercise alone (ARED group, n = 10). Urine volume decreased in both groups during spaceflight but recovered after return. The ARED group showed increased urinary calcium excretion from the 15th to 30th day of spaceflight, whereas urinary calcium was slightly decreased in the ARED+ALN group. Urinary N-terminal telopeptide (NTX) and helical peptide (HP) of type I collagen, as bone resorption markers, were elevated in the ARED group during and until 0 days after spaceflight, while there was no elevation in these parameters in the ARED+ALN group. Urinary oxalate and uric acid excretion tended to be higher in the ARED group than in the ARED+ALN group during spaceflight. These results demonstrate that astronauts on long-duration spaceflights may be at high risk for the formation of urinary calcium oxalate and calcium phosphate stones through increased urinary excretion of oxalate and uric acid, from degraded type I collagen, as well as of calcium from enhanced bone resorption. Our findings suggest that increased bone resorption during spaceflight, as a risk factor for urinary calculus formation, could be effectively prevented by an inhibitor of bone resorption. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

6.
Br J Sports Med ; 56(4): 196-203, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33597120

RESUMO

OBJECTIVES: Bone loss remains a primary health concern for astronauts, despite in-flight exercise. We examined changes in bone microarchitecture, density and strength before and after long-duration spaceflight in relation to biochemical markers of bone turnover and exercise. METHODS: Seventeen astronauts had their distal tibiae and radii imaged before and after space missions to the International Space Station using high-resolution peripheral quantitative CT. We estimated bone strength using finite element analysis and acquired blood and urine biochemical markers of bone turnover before, during and after spaceflight. Pre-flight exercise history and in-flight exercise logs were obtained. Mixed effects models examined changes in bone and biochemical variables and their relationship with mission duration and exercise. RESULTS: At the distal tibia, median cumulative losses after spaceflight were -2.9% to -4.3% for bone strength and total volumetric bone mineral density (vBMD) and -0.8% to -2.6% for trabecular vBMD, bone volume fraction, thickness and cortical vBMD. Mission duration (range 3.5-7 months) significantly predicted bone loss and crewmembers with higher concentrations of biomarkers of bone turnover before spaceflight experienced greater losses in tibia bone strength and density. Lower body resistance training volume (repetitions per week) increased 3-6 times in-flight compared with pre-spaceflight. Increases in training volume predicted preservation of tibia bone strength and trabecular vBMD and thickness. CONCLUSIONS: Findings highlight the fundamental relationship between mission duration and bone loss. Pre-flight markers of bone turnover and exercise history may identify crewmembers at greatest risk of bone loss due to unloading and may focus preventative measures.


Assuntos
Voo Espacial , Composição Corporal , Densidade Óssea , Osso e Ossos , Exercício Físico , Humanos
7.
Cells ; 12(1)2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36611835

RESUMO

The field of human space travel is in the midst of a dramatic revolution. Upcoming missions are looking to push the boundaries of space travel, with plans to travel for longer distances and durations than ever before. Both the National Aeronautics and Space Administration (NASA) and several commercial space companies (e.g., Blue Origin, SpaceX, Virgin Galactic) have already started the process of preparing for long-distance, long-duration space exploration and currently plan to explore inner solar planets (e.g., Mars) by the 2030s. With the emergence of space tourism, space travel has materialized as a potential new, exciting frontier of business, hospitality, medicine, and technology in the coming years. However, current evidence regarding human health in space is very limited, particularly pertaining to short-term and long-term space travel. This review synthesizes developments across the continuum of space health including prior studies and unpublished data from NASA related to each individual organ system, and medical screening prior to space travel. We categorized the extraterrestrial environment into exogenous (e.g., space radiation and microgravity) and endogenous processes (e.g., alteration of humans' natural circadian rhythm and mental health due to confinement, isolation, immobilization, and lack of social interaction) and their various effects on human health. The aim of this review is to explore the potential health challenges associated with space travel and how they may be overcome in order to enable new paradigms for space health, as well as the use of emerging Artificial Intelligence based (AI) technology to propel future space health research.


Assuntos
Voo Espacial , Ausência de Peso , Humanos , Inteligência Artificial , Meio Ambiente Extraterreno , Ritmo Circadiano
8.
JBMR Plus ; 5(11): e10545, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34761148

RESUMO

Humans are exposed to ionizing radiation via spaceflight or cancer radiotherapy, and exposure from radiotherapy is known to increase risk of skeletal fractures. Although irradiation can reduce trabecular bone mass, alter trabecular microarchitecture, and increase collagen cross-linking, the relative contributions of these effects to any loss of mechanical integrity remain unclear. To provide insight, while addressing both the monotonic strength and cyclic-loading fatigue life, we conducted total-body, acute, gamma-irradiation experiments on skeletally mature (17-week-old) C57BL/6J male mice (n = 84). Mice were administered doses of either 0 Gy (sham), 1 Gy (motivated by cumulative exposures from a Mars mission), or 5 Gy (motivated by clinical therapy regimens) with retrieval of the lumbar vertebrae at either a short-term (11-day) or long-term (12-week) time point after exposure. Micro-computed tomography was used to assess trabecular and cortical quantity and architecture, biochemical composition assays were used to assess collagen quality, and mechanical testing was performed to evaluate vertebral compressive strength and fatigue life. At 11 days post-exposure, 5 Gy irradiation significantly reduced trabecular mass (p < 0.001), altered microarchitecture (eg, connectivity density p < 0.001), and increased collagen cross-links (p < 0.001). Despite these changes, vertebral strength (p = 0.745) and fatigue life (p = 0.332) remained unaltered. At 12 weeks after 5 Gy exposure, the trends in trabecular bone persisted; in addition, regardless of irradiation, cortical thickness (p < 0.01) and fatigue life (p < 0.01) decreased. These results demonstrate that the highly significant effects of 5 Gy total-body irradiation on the trabecular bone morphology and collagen cross-links did not translate into detectable effects on vertebral mechanics. The only mechanical deficits observed were associated with aging. Together, these vertebral results suggest that for spaceflight, irradiation alone will likely not alter failure properties, and for radiotherapy, more investigations that include post-exposure time as a positive control and testing of both failure modalities are needed to determine the cause of increased fracture risk. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

9.
Aerosp Med Hum Perform ; 92(3): 201-206, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33754978

RESUMO

BACKGROUND: Bone density loss affects astronauts in long-duration spaceflight. The OsteoStrong Company has shown increased hip (14.95%) and lumbar (16.6%) area bone mineral density (aBMD) after 6 mo of exercises with their loading devices. The devices were tested on one subject as a pilot study.CASE REPORT: The subject performed 15 min of osteogenic exercises weekly for 24 wk. Total and regional aBMD, BAP (bone formation biomarker), NTX (bone resorption biomarker), forces exerted on devices, and weekly maximum weights lifted were collected. The control data was the subjects own lifting records 1.5 yr prestudy. The subject increased forces exerted on the devices in the upper extremity (97%, 197 to 390 kg; 435 to 859 lb), lower extremity (43%, 767 to 1097 kg; 1690 to 2418 lb), and spinal compression (22%, 275 to 336 kg; 607 to 740 lb). The monthly strength gain rate increased for snatch (2.3 vs. 0.71 kg; 5 vs. 1.56 lb), clean and jerk (2.5 vs. 0.4 kg; 5.5 vs. 0.88 lb), back squat (3.74 vs. 0 kg; 8.25 vs. 0 lb), front squat (2.15 vs. 0.2 kg; 4.75 vs. 0.47 lb), and deadlift (3.97 vs. 1.09 kg; 8.75 vs. 2.4 lb). The BAP increased by 39% (10.4 to 14.5 4 ug L1) and NTX decreased by 41% (13.4 to 7 nmol L1 BME). aBMD increased in the head (6%), arms (4.3%), trunk (6.3%), ribs (3.8%), and pelvis (11%). There were no differences in body weight, legs, spine, and whole-body aBMD on the full-body dual-energy X-ray absorptiometry (DXA). There were no differences in lumbar, hip, and femoral neck aBMD on the regional DXA.DISCUSSION: The osteogenic loading apparatus used for 15 min weekly increased strength for the one individual in this preliminary study. Future studies on astronauts and other healthy populations are necessary.Tsung A, Jupiter D, Jaquish J, Sibonga J. Weekly bone loading exercise effects on a healthy subjects strength, bone density, and bone biomarkers. Aerosp Med Hum Perform. 2021;92(3):201206.


Assuntos
Densidade Óssea , Osso e Ossos , Absorciometria de Fóton , Biomarcadores , Voluntários Saudáveis , Humanos , Projetos Piloto
10.
NPJ Microgravity ; 6: 5, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32128361

RESUMO

A substantial amount of life-sciences research has been performed in space since the beginning of human spaceflight. Investigations into bone loss, for example, are well known; other areas, such as neurovestibular function, were expected to be problematic even before humans ventured into space. Much of this research has been applied research, with a primary goal of maintaining the health and performance of astronauts in space, as opposed to research to obtain fundamental understanding or to translate to medical care on Earth. Some people-scientists and concerned citizens-have questioned the broader scientific value of this research, with the claim that the only reason to perform human research in space is to keep humans healthy in space. Here, we present examples that demonstrate that, although this research was focused on applied goals for spaceflight participants, the results of these studies are of fundamental scientific and biomedical importance. We will focus on results from bone physiology, cardiovascular and pulmonary systems, and neurovestibular studies. In these cases, findings from spaceflight research have provided a foundation for enhancing healthcare terrestrially and have increased our knowledge of basic physiological processes.

11.
J Clin Densitom ; 23(2): 155-164, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31558405

RESUMO

INTRODUCTION: In 2010, experts in osteoporosis and bone densitometry were convened by the Space Life Sciences Directorate at NASA Johnson Space Center to identify a skeletal outcome in astronauts after spaceflight that would require a clinical response to address fracture risk. After reviewing astronaut data, experts expressed concern over discordant patterns in loss and recovery of bone mineral density (BMD) after spaceflight as monitored by dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT). The pilot study described herein demonstrates the use of QCT to evaluate absence of recovery in hip trabecular BMD by QCT as an indicator of a clinically actionable response. METHODOLOGY: QCT and DXA scans of both hips were performed on 10 astronauts: once preflight and twice postflight about 1 wk and 1 yr after return. If trabecular BMD had not returned to baseline (i.e., within QCT measurement error) in 1 or both hips 1 yr after flight, then another QCT hip scan was obtained at 2 yr after flight. RESULTS: Areal BMD by DXA recovered in 9 of 10 astronauts at 1 yr postflight while incomplete recovery of trabecular BMD by QCT was evident in 5 of 10 astronauts and persisted in 4 of the 5 astronauts 2 yr postflight. CONCLUSION: As an adjunct to DXA, QCT is needed to detect changes to hip trabecular BMD after spaceflight and to confirm complete recovery. Incomplete recovery at 2 yr should trigger the need for further evaluation and possible intervention to mitigate premature fragility and fractures in astronauts following long-duration spaceflight.


Assuntos
Astronautas , Densidade Óssea , Osso Esponjoso/diagnóstico por imagem , Quadril/diagnóstico por imagem , Osteoporose/diagnóstico por imagem , Voo Espacial , Tomografia Computadorizada por Raios X , Adulto , Remodelação Óssea , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteoporose/fisiopatologia , Fraturas por Osteoporose/etiologia , Projetos Piloto , Fatores de Risco
12.
NPJ Microgravity ; 5: 6, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30886891

RESUMO

Concerns raised at a 2010 Bone Summit held for National Aeronautics and Space Administration Johnson Space Center led experts in finite element (FE) modeling for hip fracture prediction to propose including hip load capacity in the standards for astronaut skeletal health. The current standards for bone are based upon areal bone mineral density (aBMD) measurements by dual X-ray absorptiometry (DXA) and an adaptation of aBMD cut-points for fragility fractures. Task Group members recommended (i) a minimum permissible outcome limit (POL) for post-mission hip bone load capacity, (ii) use of FE hip load capacity to further screen applicants to astronaut corps, (iii) a minimum pre-flight standard for a second long-duration mission, and (iv) a method for assessing which post-mission physical activities might increase an astronaut's risk for fracture after return. QCT-FE models of eight astronaut were analyzed using nonlinear single-limb stance (NLS) and posterolateral fall (NLF) loading configurations. QCT data from the Age Gene/Environment Susceptibility (AGES) Reykjavik cohort and the Rochester Epidemiology Project were analyzed using identical modeling procedures. The 75th percentile of NLS hip load capacity for fractured elderly males of the AGES cohort (9537N) was selected as a post-mission POL. The NLF model, in combination with a Probabilistic Risk Assessment tool, was used to assess the likelihood of exceeding the hip load capacity during post-flight activities. There was no recommendation to replace the current DXA-based standards. However, FE estimation of hip load capacity appeared more meaningful for younger, physically active astronauts and was recommended to supplement aBMD cut-points.

13.
Int J Mol Sci ; 18(11)2017 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-29156538

RESUMO

The loss of bone mass and alteration in bone physiology during space flight are one of the major health risks for astronauts. Although the lack of weight bearing in microgravity is considered a risk factor for bone loss and possible osteoporosis, organisms living in space are also exposed to cosmic radiation and other environmental stress factors. As such, it is still unclear as to whether and by how much radiation exposure contributes to bone loss during space travel, and whether the effects of microgravity and radiation exposure are additive or synergistic. Bone is continuously renewed through the resorption of old bone by osteoclast cells and the formation of new bone by osteoblast cells. In this study, we investigated the combined effects of microgravity and radiation by evaluating the maturation of a hematopoietic cell line to mature osteoclasts. RAW 264.7 monocyte/macrophage cells were cultured in rotating wall vessels that simulate microgravity on the ground. Cells under static 1g or simulated microgravity were exposed to γ rays of varying doses, and then cultured in receptor activator of nuclear factor-κB ligand (RANKL) for the formation of osteoclast giant multinucleated cells (GMCs) and for gene expression analysis. Results of the study showed that radiation alone at doses as low as 0.1 Gy may stimulate osteoclast cell fusion as assessed by GMCs and the expression of signature genes such as tartrate resistant acid phosphatase (Trap) and dendritic cell-specific transmembrane protein (Dcstamp). However, osteoclast cell fusion decreased for doses greater than 0.5 Gy. In comparison to radiation exposure, simulated microgravity induced higher levels of cell fusion, and the effects of these two environmental factors appeared additive. Interestingly, the microgravity effect on osteoclast stimulatory transmembrane protein (Ocstamp) and Dcstamp expressions was significantly higher than the radiation effect, suggesting that radiation may not increase the synthesis of adhesion molecules as much as microgravity.


Assuntos
Macrófagos/citologia , Proteínas de Membrana/metabolismo , Osteoclastos/citologia , Fosfatase Ácida Resistente a Tartarato/metabolismo , Ausência de Peso/efeitos adversos , Animais , Técnicas de Cultura de Células , Fusão Celular , Proliferação de Células/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Macrófagos/metabolismo , Macrófagos/efeitos da radiação , Camundongos , Osteoclastos/metabolismo , Osteoclastos/efeitos da radiação , Ligante RANK/farmacologia , Células RAW 264.7
14.
Aerosp Med Hum Perform ; 86(12 Suppl): A38-A44, 2015 12.
Artigo em Inglês | MEDLINE | ID: mdl-26630194

RESUMO

INTRODUCTION: The measurement of bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA) is the Medical Assessment Test used at the NASA Johnson Space Center to evaluate whether prolonged exposure to spaceflight increases the risk for premature osteoporosis in International Space Station (ISS) astronauts. The DXA scans of crewmembers' BMD during the first decade of the ISS existence showed precipitous declines in BMD for the hip and spine after the typical 6-mo missions. However, a concern exists that skeletal integrity cannot be sufficiently assessed solely by DXA measurement of BMD. Consequently, use of relatively new research technologies is being proposed to NASA for risk surveillance and to enhance long-term management of skeletal health in long-duration astronauts. Sibonga JD, Spector ER, Johnston SL, Tarver WJ. Evaluating bone loss in ISS astronauts.


Assuntos
Astronautas , Densidade Óssea , Colo do Fêmur/diagnóstico por imagem , Vértebras Lombares/diagnóstico por imagem , Osteoporose/diagnóstico por imagem , Voo Espacial , Absorciometria de Fóton , Adulto , Feminino , Fêmur/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Ossos Pélvicos/diagnóstico por imagem , Astronave
15.
Bone ; 81: 712-720, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26456109

RESUMO

Bone loss and renal stone risk are longstanding concerns for astronauts. Bone resorption brought on by spaceflight elevates urinary calcium and the risk of renal stone formation. Loss of bone calcium leads to concerns about fracture risk and increased long-term risk of osteoporosis. Bone metabolism involves many factors and is interconnected with muscle metabolism and diet. We report here bone biochemistry and renal stone risk data from astronauts on 4- to 6-month International Space Station missions. All had access to a type of resistive exercise countermeasure hardware, either the Advanced Resistance Exercise Device (ARED) or the Interim Resistance Exercise Device (iRED). A subset of the ARED group also tested the bisphosphonate alendronate as a potential anti-resorptive countermeasure (Bis+ARED). While some of the basic bone marker data have been published, we provide here a more comprehensive evaluation of bone biochemistry with a larger group of astronauts. Regardless of exercise, the risk of renal stone formation increased during spaceflight. A key factor in this increase was urine volume, which was lower during flight in all groups at all time points. Thus, the easiest way to mitigate renal stone risk is to increase fluid consumption. ARED use increased bone formation without changing bone resorption, and mitigated a drop in parathyroid hormone in iRED astronauts. Sclerostin, an osteocyte-derived negative regulator of bone formation, increased 10-15% in both groups of astronauts who used the ARED (p<0.06). IGF-1, which regulates bone growth and formation, increased during flight in all 3 groups (p<0.001). Our results are consistent with the growing body of literature showing that the hyper-resorptive state of bone that is brought on by spaceflight can be countered pharmacologically or mitigated through an exercise-induced increase in bone formation, with nutritional support. Key questions remain about the effect of exercise-induced alterations in bone metabolism on bone strength and fracture risk.


Assuntos
Astronautas , Osso e Ossos/metabolismo , Cálculos Renais/etiologia , Ausência de Peso/efeitos adversos , Adulto , Alendronato/farmacologia , Biomarcadores/sangue , Biomarcadores/urina , Densidade Óssea , Conservadores da Densidade Óssea/farmacologia , Reabsorção Óssea/etiologia , Reabsorção Óssea/metabolismo , Reabsorção Óssea/prevenção & controle , Exercício Físico/fisiologia , Feminino , Humanos , Cálculos Renais/metabolismo , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Voo Espacial , Astronave
16.
J Bone Miner Res ; 29(6): 1337-45, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24293094

RESUMO

Understanding the skeletal effects of resistance exercise involves delineating the spatially heterogeneous response of bone to load distributions from different muscle contractions. Bone mineral density (BMD) analyses may obscure these patterns by averaging data from tissues with variable mechanoresponse. To assess the proximal femoral response to resistance exercise, we acquired pretraining and posttraining quantitative computed tomography (QCT) images in 22 subjects (25-55 years, 9 males, 13 females) performing two resistance exercises for 16 weeks. One group (SQDL, n = 7) performed 4 sets each of squats and deadlifts, a second group (ABADD, n = 8) performed 4 sets each of standing hip abductions and adductions, and a third group (COMBO, n = 7) performed two sets each of squat/deadlift and abduction/adduction exercise. Subjects exercised three times weekly, and the load was adjusted each session to maximum effort. We used voxel-based morphometry (VBM) to visualize BMD distributions. Hip strength computations used finite element modeling (FEM) with stance and fall loading conditions. We used QCT analysis for cortical and trabecular BMD, and cortical tissue volume. For muscle size and density, we analyzed the cross-sectional area (CSA) and mean Hounsfield unit (HU) in the hip extensor, flexor, abductor, and adductor muscle groups. Whereas SQDL increased vertebral BMD, femoral neck cortical BMD and volume, and stance hip strength, ABADD increased trochanteric cortical volume. The COMBO group showed no changes in any parameter. VBM showed different effects of ABADD and SQDL exercise, with the former causing focal changes of trochanteric cortical bone, and the latter showing diffuse changes in the femoral neck and head. ABADD exercise increased adductor CSA and HU, whereas SQDL exercise increased the hip extensor CSA and HU. In conclusion, we observed different proximal femoral bone and muscle tissue responses to SQDL and ABADD exercise. This study supports VBM and volumetric QCT (vQCT) to quantify the spatially heterogeneous effects of types of muscle contractions on bone.


Assuntos
Fêmur/fisiologia , Perna (Membro)/fisiologia , Treinamento Resistido , Absorciometria de Fóton , Adulto , Biomarcadores/metabolismo , Densidade Óssea , Estudos de Coortes , Densitometria , Feminino , Fêmur/diagnóstico por imagem , Quadril/diagnóstico por imagem , Quadril/fisiologia , Humanos , Perna (Membro)/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Músculos/fisiologia
17.
Bone ; 57(1): 164-73, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23954507

RESUMO

The present studies investigated the cellular mechanisms for the detrimental effects of high dose whole body γ-irradiation on bone. In addition, radioadaptation and bone marrow transplantation were assessed as interventions to mitigate the skeletal complications of irradiation. Increased trabecular thickness and separation and reduced cancellous bone volume fraction, connectivity density, and trabecular number were detected in proximal tibia and lumbar vertebra 14days following γ-irradiation with 6Gy. To establish the cellular mechanism for the architectural changes, vertebrae were analyzed by histomorphometry 1, 3, and 14days following irradiation. Marrow cell density decreased within 1day (67% reduction, p<0.0001), reached a minimum value after 3days (86% reduction, p<0.0001), and partially rebounded by 14days (30% reduction, p=0.0025) following irradiation. In contrast, osteoblast-lined bone perimeter was increased by 290% (1day, p=0.04), 1230% (3days, p<0.0001), and 530% (14days, p=0.003), respectively. There was a strong association between radiation-induced marrow cell death and activation of bone lining cells to express the osteoblast phenotype (Pearson correlation -0.85, p<0.0001). An increase (p=0.004) in osteoclast-lined bone perimeter was also detected with irradiation. A priming dose of γ-radiation (0.5mGy), previously shown to reduce mortality, had minimal effect on the cellular responses to radiation and did not prevent detrimental changes in bone architecture. Bone marrow transplantation normalized marrow cell density, bone turnover, and most indices of bone architecture following irradiation. In summary, radiation-induced death of marrow cells is associated with 1) a transient increase in bone formation due, at least in part, to activation of bone lining cells, and 2) an increase in bone resorption due to increased osteoclast perimeter. Bone marrow transplantation is effective in mitigating the detrimental effects of acute exposure to high dose whole body γ-radiation on bone turnover.


Assuntos
Raios gama , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos da radiação , Transplante de Medula Óssea , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/citologia , Osteoblastos/efeitos da radiação
18.
J Bone Miner Res ; 28(6): 1243-55, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23553962

RESUMO

Concern about the risk of bone loss in astronauts as a result of prolonged exposure to microgravity prompted the National Aeronautics and Space Administration to convene a Bone Summit with a panel of experts at the Johnson Space Center to review the medical data and research evidence from astronauts who have had prolonged exposure to spaceflight. Data were reviewed from 35 astronauts who had served on spaceflight missions lasting between 120 and 180 days with attention focused on astronauts who (1) were repeat fliers on long-duration missions, (2) were users of an advanced resistive exercise device (ARED), (3) were scanned by quantitative computed tomography (QCT) at the hip, (4) had hip bone strength estimated by finite element modeling, or (5) had lost >10% of areal bone mineral density (aBMD) at the hip or lumbar spine as measured by dual-energy X-ray absorptiometry (DXA). Because of the limitations of DXA in describing the effects of spaceflight on bone strength, the panel recommended that the U.S. space program use QCT and finite element modeling to further study the unique effects of spaceflight (and recovery) on bone health in order to better inform clinical decisions.


Assuntos
Medicina Aeroespacial , Astronautas , Osso e Ossos/metabolismo , Ausência de Peso/efeitos adversos , Absorciometria de Fóton , Doenças Ósseas/etiologia , Doenças Ósseas/metabolismo , Doenças Ósseas/prevenção & controle , Osso e Ossos/diagnóstico por imagem , Feminino , Humanos , Masculino , Avaliação das Necessidades , Fatores de Tempo , Estados Unidos , United States National Aeronautics and Space Administration
19.
Curr Osteoporos Rep ; 11(2): 92-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23564190

RESUMO

Currently, the measurement of areal bone mineral density (aBMD) is used at NASA to evaluate the effects of spaceflight on the skeletal health of astronauts. Notably, there are precipitous declines in aBMD with losses >10 % detected in the hip and spine in some astronauts following a typical 6-month mission in space. How those percentage changes in aBMD relate to fracture risk in the younger-aged astronaut is unknown. Given the unique set of risk factors that could be contributing to this bone loss (eg, adaptation to weightlessness, suboptimal diet, reduced physical activity, perturbed mineral metabolism), one might not expect skeletal changes due to spaceflight to be similar to skeletal changes due to aging. Consequently, dual-energy X-ray absorptiometry (DXA) measurement of aBMD may be too limiting to understand fracture probability in the astronaut during a long-duration mission and the risk for premature osteoporosis after return to Earth. Following a brief review of the current knowledge-base, this paper will discuss some innovative research projects being pursued at NASA to help understand skeletal health in astronauts.


Assuntos
Astronautas , Osteoporose/etiologia , Voo Espacial , Ausência de Peso/efeitos adversos , Absorciometria de Fóton , Densidade Óssea , Análise de Elementos Finitos , Humanos , Osteoporose/diagnóstico , Estados Unidos
20.
J Bone Miner Res ; 27(9): 1896-906, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22549960

RESUMO

Exercise has shown little success in mitigating bone loss from long-duration spaceflight. The first crews of the International Space Station (ISS) used the "interim resistive exercise device" (iRED), which allowed loads of up to 297 lb(f) (or 1337 N) but provided little protection of bone or no greater protection than aerobic exercise. In 2008, the Advanced Resistive Exercise Device (ARED), which allowed absolute loads of up to 600 lb(f) (1675 N), was launched to the ISS. We report dietary intake, bone densitometry, and biochemical markers in 13 crewmembers on ISS missions from 2006 to 2009. Of these 13, 8 had access to the iRED and 5 had access to the ARED. In both groups, bone-specific alkaline phosphatase tended to increase during flight toward the end of the mission (p = 0.06) and increased 30 days after landing (p < 0.001). Most markers of bone resorption were also increased in both groups during flight and 30 days after landing (p < 0.05). Bone densitometry revealed significant interactions (time and exercise device) for pelvis bone mineral density (BMD) and bone mineral content (p < 0.01), hip femoral neck BMD (p < 0.05), trochanter BMD (p < 0.05), and total hip BMD (p < 0.05). These variables were unchanged from preflight only for ARED crewmembers, who also returned from flight with higher percent lean mass and lower percent fat mass. Body mass was unchanged after flight in both groups. All crewmembers had nominal vitamin D status (75 ± 17 nmol/L) before and during flight. These data document that resistance exercise, coupled with adequate energy intake (shown by maintenance of body mass determined by dual-energy X-ray absorptiometry [DXA]) and vitamin D, can maintain bone in most regions during 4- to 6-month missions in microgravity. This is the first evidence that improving nutrition and resistance exercise during spaceflight can attenuate the expected BMD deficits previously observed after prolonged missions.


Assuntos
Fenômenos Bioquímicos , Osso e Ossos/fisiologia , Densitometria/métodos , Exercício Físico/fisiologia , Fenômenos Fisiológicos da Nutrição , Treinamento Resistido , Voo Espacial , Biomarcadores/sangue , Biomarcadores/urina , Composição Corporal/fisiologia , Densidade Óssea/fisiologia , Cálcio/metabolismo , Dieta , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Hormônio Paratireóideo/sangue , Pelve/fisiologia , Fatores de Tempo , Vitamina D/análogos & derivados , Vitamina D/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...