Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36073778

RESUMO

The helical shape of Helicobacter pylori cells promotes robust stomach colonization; however, how the helical shape of H. pylori cells is determined is unresolved. Previous work identified helical-cell-shape-promoting protein complexes containing a peptidoglycan-hydrolase (Csd1), a peptidoglycan precursor synthesis enzyme (MurF), a non-enzymatic homolog of Csd1 (Csd2), non-enzymatic transmembrane proteins (Csd5 and Csd7), and a bactofilin (CcmA). Bactofilins are highly conserved, spontaneously polymerizing cytoskeletal bacterial proteins. We sought to understand CcmA's function in generating the helical shape of H. pylori cells. Using CcmA deletion analysis, in vitro polymerization, and in vivo co-immunoprecipitation experiments, we identified that the bactofilin domain and N-terminal region of CcmA are required for helical cell shape and the bactofilin domain of CcmA is sufficient for polymerization and interactions with Csd5 and Csd7. We also found that CcmA's N-terminal region inhibits interaction with Csd7. Deleting the N-terminal region of CcmA increases CcmA-Csd7 interactions and destabilizes the peptidoglycan-hydrolase Csd1. Using super-resolution microscopy, we found that Csd5 recruits CcmA to the cell envelope and promotes CcmA enrichment at the major helical axis. Thus, CcmA helps organize cell-shape-determining proteins and peptidoglycan synthesis machinery to coordinate cell wall modification and synthesis, promoting the curvature required to build a helical cell.


Assuntos
Helicobacter pylori , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Forma Celular , Helicobacter pylori/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptidoglicano/metabolismo
2.
Curr Biol ; 30(20): R1258-R1260, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33080195

RESUMO

Work identifying how stalk morphogenesis in a species of Alphaproteobacteria is controlled unveils an interesting mechanism that other bacteria may utilize to generate the variety of bacterial cell morphologies found across the bacterial domain.


Assuntos
Alphaproteobacteria , Bactérias , Bactérias/genética , Morfogênese
3.
Elife ; 92020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31916938

RESUMO

Helical cell shape is necessary for efficient stomach colonization by Helicobacter pylori, but the molecular mechanisms for generating helical shape remain unclear. The helical centerline pitch and radius of wild-type H. pylori cells dictate surface curvatures of considerably higher positive and negative Gaussian curvatures than those present in straight- or curved-rod H. pylori. Quantitative 3D microscopy analysis of short pulses with either N-acetylmuramic acid or D-alanine metabolic probes showed that cell wall growth is enhanced at both sidewall curvature extremes. Immunofluorescence revealed MreB is most abundant at negative Gaussian curvature, while the bactofilin CcmA is most abundant at positive Gaussian curvature. Strains expressing CcmA variants with altered polymerization properties lose helical shape and associated positive Gaussian curvatures. We thus propose a model where CcmA and MreB promote PG synthesis at positive and negative Gaussian curvatures, respectively, and that this patterning is one mechanism necessary for maintaining helical shape.


Round spheres, straight rods, and twisting corkscrews, bacteria come in many different shapes. The shape of bacteria is dictated by their cell wall, the strong outer barrier of the cell. As bacteria grow and multiply, they must add to their cell wall while keeping the same basic shape. The cells walls are made from long chain-like molecules via processes that are guided by protein scaffolds within the cell. Many common antibiotics, including penicillin, stop bacterial infections by interrupting the growth of cell walls. Helicobacter pylori is a common bacterium that lives in the gut and, after many years, can cause stomach ulcers and stomach cancer. H. pylori are shaped in a twisting helix, much like a corkscrew. This shape helps H. pylori to take hold and colonize the stomach. It remains unclear how H. pylori creates and maintains its helical shape. The helix is much more curved than other bacteria, and H. pylori does not have the same helpful proteins that other curved bacteria do. If H. pylori grows asymmetrically, adding more material to the cell wall on its long outer side to create a twisting helix, what controls the process? To find out, Taylor et al. grew H. pylori cells and watched how the cell walls took shape. First, a fluorescent dye was attached to the building blocks of the cell wall or to underlying proteins that were thought to help direct its growth. The cells were then imaged in 3D, and images from hundreds of cells were reconstructed to analyze the growth patterns of the bacteria's cell wall. A protein called CcmA was found most often on the long side of the twisting H. pylori. When the CcmA protein was isolated in a dish, it spontaneously formed sheets and helical bundles, confirming its role as a structural scaffold for the cell wall. When CcmA was absent from the cell of H. pylori, Taylor et al. observed that the pattern of cell growth changed substantially. This work identifies a key component directing the growth of the cell wall of H. pylori and therefore, a new target for antibiotics. Its helical shape is essential for H. pylori to infect the gut, so blocking the action of the CcmA protein may interrupt cell wall growth and prevent stomach infections.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Helicobacter pylori/metabolismo , Alanina/metabolismo , Helicobacter pylori/citologia , Ácidos Murâmicos/metabolismo , Peptidoglicano/biossíntese
4.
Annu Rev Microbiol ; 73: 457-480, 2019 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-31206344

RESUMO

Helical cell shape appears throughout the bacterial phylogenetic tree. Recent exciting work characterizing cell shape mutants in a number of curved and helical Proteobacteria is beginning to suggest possible mechanisms and provide tools to assess functional significance. We focus here on Caulobacter crescentus, Vibrio cholerae, Helicobacter pylori, and Campylobacter jejuni, organisms from three classes of Proteobacteria that live in diverse environments, from freshwater and saltwater to distinct compartments within the gastrointestinal tract of humans and birds. Comparisons among these bacteria reveal common themes as well as unique solutions to the task of maintaining cell curvature. While motility appears to be influenced in all these bacteria when cell shape is perturbed, consequences on niche colonization are diverse, suggesting the need to consider additional selective pressures.


Assuntos
Morfogênese , Proteobactérias/citologia , Proteobactérias/crescimento & desenvolvimento , Adaptação Biológica , Animais , Microbiologia Ambiental , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...