Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38257953

RESUMO

Coagulase-negative staphylococci (CoNS) are commensal on human body surfaces and, for years, they were not considered a cause of bloodstream infection and were often regarded as contamination. However, the involvement of CoNS in nosocomial infection is increasingly being recognized. The insertion of cannulas and intravascular catheters represents the primary source of CoNS entry into the bloodstream, causing bacteremia and sepsis. They owe their pathogenic role to their ability to produce biofilms on surfaces, such as medical devices. In this study, we evaluate the adhesive capacity of CoNS isolated from blood cultures by comparing a spectrophotometric phenotypic assay with genotypic analysis based on the evidence of the ica operon. We retrospectively reviewed the database of CoNS isolated from blood cultures from January to December 2021 that were considered responsible for 361 bloodstream infections. Eighty-nine CoNS were selected among these. Our data show that Staphylococcus epidermidis was the predominant species isolated, expressing greater adhesive capacities, especially those with the complete operon. Knowledge of the adhesive capabilities of a microorganism responsible for sepsis can be useful in implementing appropriate corrective and preventive measures, since conventional antibiotic therapy cannot effectively eradicate biofilms.

2.
Cancers (Basel) ; 15(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37345068

RESUMO

Acute myeloid leukemia (AML) with nucleophosmin (NPM1) genetic mutations is the most common subtype in adult patients. Refractory or relapsed disease in unfit patients or after allogeneic hematopoietic stem cell transplantation (allo-HSCT) has a poor prognosis. NPM1-mutated protein, stably expressed on tumor cells but not on normal tissues, may serve as an ideal target for NPM1-mutated AML immunotherapy. The study aim was to investigate the feasibility of producing mutated-NPM1-specific cytotoxic T cells (CTLs) suitable for somatic cell therapy to prevent or treat hematologic relapse in patients with NPM1-mutated AML. T cells were expanded or primed from patient or donor peripheral blood mononuclear cells by NPM1-mutated protein-derived peptides, and tested for leukemia antigen-targeted cytotoxic activity, cytokine production and hematopoietic precursor inhibitory effect. We found that mutated-NPM1-specific CTLs, displaying specific cytokine production and high-level cytotoxicity against patients' leukemia blasts, and limited inhibitory activity in clonogenic assays, could be obtained from both patients and donors. The polyfunctional mutated-NPM1-specific CTLs included both CD8+ and CD4+ T cells endowed with strong lytic capacity. Our results suggest that mutated-NPM1-targeted CTLs may be a useful therapeutic option to control low-tumor burden relapse following conventional chemotherapy in older NPM1-mutated AML patients or eradicate persistent MRD after HSCT.

3.
Microorganisms ; 10(6)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35744702

RESUMO

Mycobacterium chimaera (MC) is an environmental, slowly growing, non-tuberculous mycobacterium (NTM) belonging to Mycobacterium avium complex (MAC), which recently has been linked to severe cardiovascular infections following open heart and vascular surgery. The majority of the diagnostic laboratory tests used in routine are not able to distinguish MC from M. intracellulare (MI), because of the great genetic similarity existing between these two species. The Genotype Mycobacterium NTM-DR™ represents a valid method to differentiate between these species, but it is expensive, requiring also specialized personnel. Recently, MALDI-TOF MS has been proposed to identify relevant NTM. However, a software implementation is required to distinguish between MC and MI, presenting the two microorganisms' overlapping spectra. The present study evaluates the feasibility of applying a MALDI-TOF logarithmic-based analysis in the routine of a clinical microbiology laboratory, and proposes an easy-to-use template spreadsheet to make the results quickly interpretable. The protocol was previously validated through the identification of 87 strains of MC/MI collected from clinical and environmental samples, and it was identified using the GenoType Mycobacterium NTM-DR™ and/or WGS. The proposed protocol provides accurate identification for the isolates tested; moreover, it is less expensive and more rapid than sequencing methods and can be implemented with minimum effort.

4.
Front Immunol ; 11: 567531, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178192

RESUMO

Dramatic progress in the outcome of allogeneic hematopoietic stem cell transplantation (allo-HSCT) from alternative sources in pediatric patients has been registered over the past decade, providing a chance to cure children and adolescents in need of a transplant. Despite these advances, transplant-related mortality due to infectious complications remains a major problem, principally reflecting the inability of the depressed host immune system to limit infection replication and dissemination. In addition, development of multiple infections, a common occurrence after high-risk allo-HSCT, has important implications for overall survival. Prophylactic and preemptive pharmacotherapy is limited by toxicity and, to some extent, by lack of efficacy in breakthrough infections. T-cell reconstitution is a key requirement for effective infection control after HSCT. Consequently, T-cell immunotherapeutic strategies to boost pathogen-specific immunity may complement or represent an alternative to drug treatments. Pioneering proof of principle studies demonstrated that the administration of donor-derived T cells directed to human herpesviruses, on the basis of viral DNA monitoring, could effectively restore specific immunity and confer protection against viral infections. Since then, the field has evolved with implementation of techniques able to hasten production, allow for selection of specific cell subsets, and target multiple pathogens. This review provides a brief overview of current cellular therapeutic strategies to prevent or treat pathogen-related complications after HSCT, research carried out to increase efficacy and safety, including T-cell production for treatment of infections in patients with virus-naïve donors, results from clinical trials, and future developments to widen adoptive T-cell therapy access in the HSCT setting.


Assuntos
Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Controle de Infecções , Infecções/etiologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Terapia Baseada em Transplante de Células e Tecidos/efeitos adversos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Ensaios Clínicos como Assunto , Acessibilidade aos Serviços de Saúde , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Infecções/terapia , Especificidade do Receptor de Antígeno de Linfócitos T , Linfócitos T/transplante , Transplante Homólogo/efeitos adversos , Viroses/etiologia , Viroses/prevenção & controle , Viroses/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...