Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 125, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38373884

RESUMO

BACKGROUND: Zinc (Zn) and nickel (Ni) are nutrients that are crucial for plant growth; however, when they are present at higher concentrations, they can cause toxicity in plants. The present study aimed to isolate plant growth promoting endophytic bacteria from Viburnum grandiflorum and assess its plant and defense promoting potential alone and in combination with RP in zinc (Zn) and nickel (Ni) toxic soil. The isolated endophytic bacteria were identified using 16s rRNA gene sequencing. For the experiment, twelve different treatments were applied using Zn, Ni, isolated endophytic Bacillus mycoides (Accession # MW979613), and rock phosphate (RP). The Ni, Zn and RP were used at the rate of (100 mg/kg) and (0.2 g/kg) respectively. A pot experiment with three replicates of each treatment was conducted using a complete randomized design (CRD). RESULTS: The results indicated that Ni (T5 = seed + 100 mg/kg Ni and T9 = seed + 100 mg/kg Zn) and Zn concentrations inhibited plant growth, but the intensity of growth inhibition was higher in Ni-contaminated soil. Bacillus mycoides and RP at 100 mg/Kg Zn (T12 = inoculated seed + 100 mg/kg Zn + RP0.2 g/kg.) increased the shoot length, leaf width, protein and sugar content by 57%, 13%, 20% and 34%, respectively, compared to the control. The antioxidant enzymes superoxide dismutases (SOD), peroxidase (POD) were decreased in contaminated soil. Furthermore, Ni and Zn accumulation was inhibited in T11 (seed + 100 mg/kg Zn + RP0.2 g/Kg) and T12 (inoculated seed + 100 mg/kg Zn + RP0.2 g/Kg) by 62 and 63% respectively. The Cu, Ca, and K, contents increased by 128, 219 and 85, Mn, Na, and K by 326, 449, and 84% in (T3 = inoculated seed) and (T4 = inoculated seed + RP 0.2 g/Kg) respectively. CONCLUSIONS: Ni was more toxic to plants than Zn, but endophytic bacteria isolated from Viburnum grandiflorum, helped wheat (Triticum aestivum) plants and reduced the toxic effects of Ni and Zn. The effect of Bacillus mycoides was more prominent in combination with RP which promoted and suppressed heavy-metal toxicity. The reported combination of Bacillus mycoides and RP may be useful for improving plant growth and overcoming metal stress.


Assuntos
Bacillus , Metais Pesados , Poluentes do Solo , Triticum/genética , Níquel/toxicidade , Níquel/metabolismo , Fosfatos/metabolismo , RNA Ribossômico 16S/genética , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Zinco/metabolismo , Bactérias/metabolismo , Solo , Poluentes do Solo/metabolismo
2.
Front Microbiol ; 14: 1255921, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029198

RESUMO

Introduction: Heavy metals such as iron, copper, manganese, cobalt, silver, zinc, nickel, and arsenic have accumulated in soils for a long time due to the dumping of industrial waste and sewage. Various techniques have been adapted to overcome metal toxicity in agricultural land but utilizing a biological application using potential microorganisms in heavy metals contaminated soil may be a successful approach to decontaminate heavy metals soil. Therefore, the current study aimed to isolate endophytic bacteria from a medicinal plant (Viburnum grandiflorum) and to investigate the growth-promoting and heavy metal detoxification potential of the isolated endophytic bacteria Agrococus tereus (GenBank accession number MW 979614) under nickel and zinc contamination. Methods: Zinc sulfate and nickel sulfate solutions were prepared at the rate of 100 mg/kg and 50 mg/kg in sterilized distilled water. The experiment was conducted using a completely random design (CRD) with three replicates for each treatment. Results and Discussion: Inoculation of seeds with A. tereus significantly increased the plant growth, nutrient uptake, and defense system. Treatment T4 (inoculated seeds), T5 (inoculated seeds + Zn100 mg/kg), and T6 (inoculated seeds + Ni 100 mg/kg) were effective, but T5 (inoculated seeds + Zn100 mg/kg) was the most pronounced and increased shoot length, root length, leaf width, plant height, fresh weight, moisture content, and proline by 49%, 38%, 89%, 31%, 113%, and 146%, respectively. Moreover the antioxidant enzymes peroxidase and super oxidase dismutase were accelerated by 211 and 68% in contaminated soil when plants were inoculated by A. tereus respectively. Similarly the inoculation of A. tereus also enhanced maize plants' absorption of Cu, Mn, Ni, Na, Cr, Fe, Ca, Mg, and K significantly. Results of the findings concluded that 100 mg/kg of Zn and Ni were toxic to maize growth, but seed inoculation with A. tereus helped the plants significantly in reducing zinc and nickel stress. The A. tereus strain may be employed as a potential strain for the detoxification of heavy metals.

3.
J Cancer ; 12(16): 4891-4900, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234859

RESUMO

Pathogenic bacterial strains can alter the normal function of cells and induce different levels of inflammatory responses that are connected to the development of different diseases, such as tuberculosis, diarrhea, cancer etc. Chlamydia trachomatis (C. trachomatis) is an intracellular obligate gram-negative bacterium which has been connected with the cervical cancer etiology. Nevertheless, establishment of causality and the underlying mechanisms of carcinogenesis of cervical cancer associated with C. trachomatis remain unclear. Studies reveal the existence of C. trachomatis in cervical cancer patients. The DNA repair pathways including mismatch repair, nucleotide excision, and base excision are vital in the abatement of accumulated mutations that can direct to the process of carcinogenesis. C. trachomatis recruits DDR proteins away from sites of DNA damage and, in this way, impedes the DDR. Therefore, by disturbing host cell-cycle control, chromatin and DDR repair, C. trachomatis makes a situation favorable for malignant transformation. Inflammation originated due to infection directs over production of reactive oxygen species (ROS) and consequent oxidative DNA damage. This review may aid our current understanding of the etiology of cervical cancer in C. trachomatis-infected patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...