Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e22203, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045118

RESUMO

This paper presents a transfer and deep learning based approach to the classification of Sickle Cell Disease (SCD). Five transfer learning models such as ResNet-50, AlexNet, MobileNet, VGG-16 and VGG-19, and a sequential convolutional neural network (CNN) have been implemented for SCD classification. ErythrocytesIDB dataset has been used for training and testing the models. In order to make up for the data insufficiency of the erythrocytesIDB dataset, advanced image augmentation techniques are employed to ensure the robustness of the dataset, enhance dataset diversity and improve the accuracy of the models. An ablation experiment using Random Forest and Support Vector Machine (SVM) classifiers along with various hyperparameter tweaking was carried out to determine the contribution of different model elements on their predicted accuracy. A rigorous statistical analysis was carried out for evaluation and to further evaluate the model's robustness, an adversarial attack test was conducted. The experimental results demonstrate compelling performance across all models. After performing the statistical tests, it was observed that MobileNet showed a significant improvement (p = 0.0229), while other models (ResNet-50, AlexNet, VGG-16, VGG-19) did not (p > 0.05). Notably, the ResNet-50 model achieves remarkable precision, recall, and F1-score values of 100 % for circular, elongated, and other cell shapes when experimented with a smaller dataset. The AlexNet model achieves a balanced precision (98 %) and recall (99 %) for circular and elongated shapes. Meanwhile, the other models showcase competitive performance.

2.
Neural Comput Appl ; 35(18): 13503-13527, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213320

RESUMO

Covid text identification (CTI) is a crucial research concern in natural language processing (NLP). Social and electronic media are simultaneously adding a large volume of Covid-affiliated text on the World Wide Web due to the effortless access to the Internet, electronic gadgets and the Covid outbreak. Most of these texts are uninformative and contain misinformation, disinformation and malinformation that create an infodemic. Thus, Covid text identification is essential for controlling societal distrust and panic. Though very little Covid-related research (such as Covid disinformation, misinformation and fake news) has been reported in high-resource languages (e.g. English), CTI in low-resource languages (like Bengali) is in the preliminary stage to date. However, automatic CTI in Bengali text is challenging due to the deficit of benchmark corpora, complex linguistic constructs, immense verb inflexions and scarcity of NLP tools. On the other hand, the manual processing of Bengali Covid texts is arduous and costly due to their messy or unstructured forms. This research proposes a deep learning-based network (CovTiNet) to identify Covid text in Bengali. The CovTiNet incorporates an attention-based position embedding feature fusion for text-to-feature representation and attention-based CNN for Covid text identification. Experimental results show that the proposed CovTiNet achieved the highest accuracy of 96.61±.001% on the developed dataset (BCovC) compared to the other methods and baselines (i.e. BERT-M, IndicBERT, ELECTRA-Bengali, DistilBERT-M, BiLSTM, DCNN, CNN, LSTM, VDCNN and ACNN).

3.
Front Neurorobot ; 13: 94, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798438

RESUMO

Background: Realization of online control of an artificial or virtual arm using information decoded from EEG normally occurs by classifying different activation states or voluntary modulation of the sensorimotor activity linked to different overt actions of the subject. However, using a more natural control scheme, such as decoding the trajectory of imagined 3D arm movements to move a prosthetic, robotic, or virtual arm has been reported in a limited amount of studies, all using offline feed-forward control schemes. Objective: In this study, we report the first attempt to realize online control of two virtual arms generating movements toward three targets/arm in 3D space. The 3D trajectory of imagined arm movements was decoded from power spectral density of mu, low beta, high beta, and low gamma EEG oscillations using multiple linear regression. The analysis was performed on a dataset recorded from three subjects in seven sessions wherein each session comprised three experimental blocks: an offline calibration block and two online feedback blocks. Target classification accuracy using predicted trajectories of the virtual arms was computed and compared with results of a filter-bank common spatial patterns (FBCSP) based multi-class classification method involving mutual information (MI) selection and linear discriminant analysis (LDA) modules. Main Results: Target classification accuracy from predicted trajectory of imagined 3D arm movements in the offline runs for two subjects (mean 45%, std 5%) was significantly higher (p < 0.05) than chance level (33.3%). Nevertheless, the accuracy during real-time control of the virtual arms using the trajectory decoded directly from EEG was in the range of chance level (33.3%). However, the results of two subjects show that false-positive feedback may increase the accuracy in closed-loop. The FBCSP based multi-class classification method distinguished imagined movements of left and right arm with reasonable accuracy for two of the three subjects (mean 70%, std 5% compared to 50% chance level). However, classification of the imagined arm movement toward three targets was not successful with the FBCSP classifier as the achieved accuracy (mean 33%, std 5%) was similar to the chance level (33.3%). Sub-optimal components of the multi-session experimental paradigm were identified, and an improved paradigm proposed.

4.
Front Neurorobot ; 12: 63, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356820

RESUMO

In reinforcement learning, reward is used to guide the learning process. The reward is often designed to be task-dependent, and it may require significant domain knowledge to design a good reward function. This paper proposes general reward functions for maintenance, approach, avoidance, and achievement goal types. These reward functions exploit the inherent property of each type of goal and are thus task-independent. We also propose metrics to measure an agent's performance for learning each type of goal. We evaluate the intrinsic reward functions in a framework that can autonomously generate goals and learn solutions to those goals using a standard reinforcement learning algorithm. We show empirically how the proposed reward functions lead to learning in a mobile robot application. Finally, using the proposed reward functions as building blocks, we demonstrate how compound reward functions, reward functions to generate sequences of tasks, can be created that allow the mobile robot to learn more complex behaviors.

5.
Front Neurosci ; 12: 130, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29615848

RESUMO

Objective: To date, motion trajectory prediction (MTP) of a limb from non-invasive electroencephalography (EEG) has relied, primarily, on band-pass filtered samples of EEG potentials i.e., the potential time-series model. Most MTP studies involve decoding 2D and 3D arm movements i.e., executed arm movements. Decoding of observed or imagined 3D movements has been demonstrated with limited success and only reported in a few studies. MTP studies normally use EEG potentials filtered in the low delta (~1 Hz) band for reconstructing the trajectory of an executed or an imagined/observed movement. In contrast to MTP, multiclass classification based sensorimotor rhythm brain-computer interfaces aim to classify movements using the power spectral density of mu (8-12 Hz) and beta (12-28 Hz) bands. Approach: We investigated if replacing the standard potentials time-series input with a power spectral density based bandpower time-series improves trajectory decoding accuracy of kinesthetically imagined 3D hand movement tasks (i.e., imagined 3D trajectory of the hand joint) and whether imagined 3D hand movements kinematics are encoded also in mu and beta bands. Twelve naïve subjects were asked to generate or imagine generating pointing movements with their right dominant arm to four targets distributed in 3D space in synchrony with an auditory cue (beep). Main results: Using the bandpower time-series based model, the highest decoding accuracy for motor execution was observed in mu and beta bands whilst for imagined movements the low gamma (28-40 Hz) band was also observed to improve decoding accuracy for some subjects. Moreover, for both (executed and imagined) movements, the bandpower time-series model with mu, beta, and low gamma bands produced significantly higher reconstruction accuracy than the commonly used potential time-series model and delta oscillations. Significance: Contrary to many studies that investigated only executed hand movements and recommend using delta oscillations for decoding directional information of a single limb joint, our findings suggest that motor kinematics for imagined movements are reflected mostly in power spectral density of mu, beta and low gamma bands, and that these bands may be most informative for decoding 3D trajectories of imagined limb movements.

6.
Cognit Comput ; 9(4): 411-422, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28845200

RESUMO

Nature-inspired meta-heuristic algorithms have dominated the scientific literature in the areas of machine learning and cognitive computing paradigm in the last three decades. Chemical reaction optimisation (CRO) is a population-based meta-heuristic algorithm based on the principles of chemical reaction. A chemical reaction is seen as a process of transforming the reactants (or molecules) through a sequence of reactions into products. This process of transformation is implemented in the CRO algorithm to solve optimisation problems. This article starts with an overview of the chemical reactions and how it is applied to the optimisation problem. A review of CRO and its variants is presented in the paper. Guidelines from the literature on the effective choice of CRO parameters for solution of optimisation problems are summarised.

7.
Cognit Comput ; 7(6): 706-714, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26693257

RESUMO

This paper presents an overview of significant advances made in the emerging field of nature-inspired computing (NIC) with a focus on the physics- and biology-based approaches and algorithms. A parallel development in the past two decades has been the emergence of the field of computational intelligence (CI) consisting primarily of the three fields of neural networks, evolutionary computing and fuzzy logic. It is observed that NIC and CI intersect. The authors advocate and foresee more cross-fertilisation of the two emerging fields.

9.
IEEE Trans Cybern ; 43(1): 115-28, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22736650

RESUMO

This paper proposes a spiking-neural-network-based robot controller inspired by the control structures of biological systems. Information is routed through the network using facilitating dynamic synapses with short-term plasticity. Learning occurs through long-term synaptic plasticity which is implemented using the temporal difference learning rule to enable the robot to learn to associate the correct movement with the appropriate input conditions. The network self-organizes to provide memories of environments that the robot encounters. A Pioneer robot simulator with laser and sonar proximity sensors is used to verify the performance of the network with a wall-following task, and the results are presented.


Assuntos
Inteligência Artificial , Modelos Neurológicos , Redes Neurais de Computação , Robótica/métodos , Simulação por Computador , Plasticidade Neuronal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...