Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(16): 15678-15686, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37387522

RESUMO

Inspired by knobby starfish, this work demonstrates a bottom-up approach for fabricating a calcite single-crystal (CSC) with a diamond structure by exploiting the self-assembly of the block copolymer and corresponding templated synthesis. Similar to the knobby starfish, the diamond structure of the CSC gives rise to a brittle-to-ductile transition. Most interestingly, the diamond-structured CSC fabricated exhibits exceptional specific energy absorption and strength with lightweight character superior to natural materials and artificial counterparts from a top-down approach due to the nanosized effect. This approach provides the feasibility for creating mechanical metamaterials with the combined effects of the topology and nanosize on the mechanical performance.

2.
Polymers (Basel) ; 14(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35567059

RESUMO

Herein, this work aims to fabricate well-ordered nanonetwork epoxy resin modified with poly(butyl acrylate)-b-poly(methyl methacrylate) (PBA-b-PMMA) block copolymer (BCP) for enhanced energy dissipation using a self-assembled diblock copolymer of polystyrene-b-poly(dimethylsiloxane) (PS-b-PDMS) with gyroid and diamond structures as templates. A systematic study of mechanical properties using nanoindentation of epoxy resin with gyroid- and diamond-structures after modification revealed significant enhancement in energy dissipation, with the values of 0.36 ± 0.02 nJ (gyroid) and 0.43 ± 0.03 nJ (diamond), respectively, when compared to intrinsic epoxy resin (approximately 0.02 ± 0.002 nJ) with brittle characteristics. This enhanced property is attributed to the synergic effect of the deliberate structure with well-ordered nanonetwork texture and the toughening of BCP-based modifiers at the molecular level. In addition to the deliberate structural effect from the nanonetwork texture, the BCP modifier composed of epoxy-philic hard segment and epoxy-phobic soft segment led to dispersed soft-segment domains in the nanonetwork-structured epoxy matrix with superior interfacial strength for the enhancement of applied energy dissipation.

3.
Nano Lett ; 21(8): 3355-3363, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33856816

RESUMO

Herein, we aim to develop a facile method for the fabrication of mechanical metamaterials from templated polymerization of thermosets including phenolic and epoxy resins using self-assembled block copolymer, polystyrene-polydimethylsiloxane with tripod network (gyroid), and tetrapod network (diamond) structures, as templates. Nanoindentation studies on the nanonetwork thermosets fabricated reveal enhanced energy dissipation from intrinsic brittle thermosets due to the deliberate structuring; the calculated energy dissipation for gyroid phenolic resins is 0.23 nJ whereas the one with diamond structure gives a value of 0.33 nJ. Consistently, the gyroid-structured epoxy gives a high energy dissipation value of 0.57 nJ, and the one with diamond structure could reach 0.78 nJ. These enhanced properties are attributed to the isotropic periodicity of the nanonetwork texture with plastic deformation, and the higher number of struts in the tetrapod diamond network in contrast to tripod gyroid, as confirmed by the finite element analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...