Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-20, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38217308

RESUMO

Recently, there has been significant attention on machine learning algorithms for predictive modeling. Prediction models for enzyme inhibitors are limited, and it is essential to account for chemical biases while developing them. The lack of repeatability in available models and chemical bias issues constrain drug discovery and development. A new prediction model for enzyme inhibitors has been developed, and the model efficacy was checked using Dipeptidyl peptidase 4 (DPP-4) inhibitors. A Python script was prepared and can be provided for personal use upon request. Among various machine learning algorithms, it was found that Random Forest offers the best accuracy. Two models were compared, one with diverse training and test data and the other with a random split. It was concluded that machine learning predictive models based on the Murcko scaffold can address chemical bias concerns. In-silico screening of the Drug Bank database identified two molecules against DPP-4, which are previously proven hit molecules. The approach was further validated through molecular docking studies and molecular dynamics simulations, demonstrating the credibility and relevance of the developed model for future investigations and potential translation into clinical applications.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; : 1-18, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909480

RESUMO

Fused pyrimidine scaffold is present in several US FDA-approved drugs for various therapeutic indications. Drug repurposing (or drug repositioning) involves the analysis of existing clinically approved drugs for new therapeutic indications. Phosphoinositide-3-kinase (PI3K), via the regulatory PI3K pathway, is involved in cell growth, proliferation, differentiation, survival, and angiogenesis. It is also considered a target in anticancer drug development as it promotes the growth of cancerous cells and increases resistance to anticancer therapy. The present work employed computational techniques like molecular docking, MMGBSA analysis, and molecular dynamics simulations to explore the PI3K inhibition by FDA-approved drugs with fused pyrimidine scaffold. The work identifies Lapatinib as a pan-class I PI3K inhibitor and Dipyridamole as an γ isoform-specific PI3K inhibitor and is reported here.Communicated by Ramaswamy H. Sarma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...