Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35408690

RESUMO

Dibutyl phthalate (DBP) produced by Streptomyces sp. H11809 exerted inhibitory activity against human GSK-3ß (Hs GSK-3ß) and Plasmodiumfalciparum 3D7 (Pf 3D7) malaria parasites. The current study aimed to determine DBP's plausible mode of action against Hs GSK-3ß and Pf 3D7. Molecular docking analysis indicated that DBP has a higher binding affinity to the substrate-binding site (pocket 2; -6.9 kcal/mol) than the ATP-binding site (pocket 1; -6.1 kcal/mol) of Hs GSK-3ß. It was suggested that the esters of DBP play a pivotal role in the inhibition of Hs GSK-3ß through the formation of hydrogen bonds with Arg96/Glu97 amino acid residues in pocket 2. Subsequently, an in vitro Hs GSK-3ß enzymatic assay revealed that DBP inhibits the activity of Hs GSK-3ß via mixed inhibition inhibitory mechanisms, with a moderate IC50 of 2.0 µM. Furthermore, the decrease in Km value with an increasing DBP concentration suggested that DBP favors binding on free Hs GSK-3ß over its substrate-bound state. However, the antimalarial mode of action of DBP remains unknown since the generation of a Pf 3D7 DBP-resistant clone was not successful. Thus, the molecular target of DBP might be indispensable for Pf survival. We also identified nocardamine as another active compound from Streptomyces sp. H11809 chloroform extract. It showed potent antimalarial activity with an IC50 of 1.5 µM, which is ~10-fold more potent than DBP, but with no effect on Hs GSK-3ß. The addition of ≥12.5 µM ferric ions into the Pf culture reduced nocardamine antimalarial activity by 90% under in vitro settings. Hence, the iron-chelating ability of nocardamine was shown to starve the parasites from their iron source, eventually inhibiting their growth.


Assuntos
Antimaláricos , Streptomyces , Antimaláricos/farmacologia , Dibutilftalato , Glicogênio Sintase Quinase 3 beta , Humanos , Simulação de Acoplamento Molecular , Peptídeos Cíclicos
2.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803419

RESUMO

Although death in malaria is attributed to cerebrovascular blockage and anaemia, overwhelming cytokine production can contribute to the severity of the disease. Therefore, mitigation of dysregulated inflammatory signalling may provide further benefit for malaria treatment. Quercetin (3,3',4',5,7-pentahydroxyflavone) is known to inhibit glycogen synthase kinase-3ß (GSK3ß), a potent regulator of both pro- and anti-inflammatory effects. Quercetin is therefore a potential therapeutic to modulate the imbalanced cytokine production during malarial infection. Anti-malarial effects of quercetin were evaluated in murine models of severe and cerebral malaria using Plasmodium berghei NK65 and ANKA strains, respectively. Western blotting and analysis of cytokines were carried out to determine the GSK3ß-mediated cytokine-modulating effects of quercetin in infected animals. Quercetin (25 mg/kg BW) treatment in P. berghei NK65-infected animals resulted in 60.7 ± 2.4% suppression of parasitaemia and significantly decreased serum levels of TNF-α and IFN-γ, whilst levels of IL-10 and IL-4 were elevated significantly. Western analysis revealed that pGSK3ß (Ser9) increased 2.7-fold in the liver of quercetin-treated NK65-infected animals. Treatment of P. berghei ANKA-infected mice with quercetin (15 mg/kg BW) increased (2.3-fold) pGSK3ß (Ser9) in the brains of infected animals. Quercetin is a potential plant-derived therapeutic for malaria on the basis that it can elicit anti-malarial and GSK3ß-mediated cytokine-modulating effects.

3.
Data Brief ; 33: 106592, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33318979

RESUMO

Aromatic (ar)-turmerone is one of the aromatic constituents abundant in turmeric essential oil from Curcuma longa. Ar-turmerone exhibited anti-inflammatory properties. So far, antiplasmodial data for ar-turmerone is still not reported. The data showed the in vitro antiplasmodial effect of ar-turmerone against Plasmodium falciparum 3D7 (chloroquine-sensitive) via Plasmodium lactate dehydrogenase assay (pLDH) and cytotoxic effect against Vero mammalian kidney cells using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) colourimetric assay. Selectivity indexes of ar-turmerone were calculated based on inhibition concentration at 50% of parasite growth (IC50) from MTT and pLDH assays and the effects of ar-turmerone were compared to the antimalarial reference drug chloroquine diphosphate. The inhibitory effect of ar-turmerone at the intraerythrocytic stages of plasmodial lifecycles was evaluated via a stage-dependant susceptibility test. The antiplasmodial and cytotoxic activities of ar-turmerone revealed IC50 values of 46.8 ± 2.4 µM and 820.4 ± 1.5 µM respectively. The selectivity index of ar-turmerone was 17.5. Ar-turmerone suppressed the ring-trophozoite transition stage of the intraerythrocytic life cycle of P. falciparum 3D7.

4.
Drug Discov Ther ; 14(2): 107-108, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32321878

RESUMO

The recent clinical trial reports pertaining to the efficacy of chloroquine and hydroxychloroquine against COVID-19 albeit yet to be validated with larger clinical trials, have sparked much interest globally to evaluate whether this anti-malarial drug can be repurposed for the treatment of COVID-19. In addition to its anti-viral activity, the anti-inflammatory activity of chloroquine may also contribute to its efficacy. Based on our data obtained from an animal infection model of melioidosis (a disease caused by the bacteria Burkholderia pseudomallei), treatment with chloroquine can result in the phosphorylation and consequent inhibition of glycogen synthase kinase-3ß (GSK3ß). This serine/threonine protein kinase is now recognised as a point of convergence for host inflammatory response. In view of this, it is plausible that the mechanism for the anti-inflammatory effect of chloroquine against COVID-19 involves inhibition of host GSK3ß.


Assuntos
Cloroquina/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Pneumonia Viral/tratamento farmacológico , Animais , Anti-Inflamatórios/uso terapêutico , Betacoronavirus , COVID-19 , Modelos Animais de Doenças , Melioidose/tratamento farmacológico , Pandemias , Fosforilação , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
5.
J Ethnopharmacol ; 254: 112657, 2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32045683

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Malaria, a devastating infectious disease which was initially recognized as episodic fever, is caused by parasitic protozoan of the genus Plasmodium. Medicinal plants with ethnobotanical information to treat fever and/or malaria has been the key element in identifying potential plant candidates for antimalarial screening. Goniothalamus lanceolatus Miq. (Annonaceae) is used as a folk remedy, particularly to treat fever and skin diseases. AIM OF THE STUDY: In this context, supported with previous preliminary data of its antiplasmodial activity, this study was undertaken to determine the in vitro antiplasmodial and cytotoxicity activities of G. lanceolatus crude extracts and its major compounds. MATERIALS AND METHODS: The in vitro antiplasmodial activity was determined by parasite lactate dehydrogenase (pLDH) assay on chloroquine-sensitive (3D7) and chloroquine-resistant (K1) strains of Plasmodium falciparum. The cytotoxicity activity was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on hepatocellular carcinoma (HepG2) and normal liver (WRL-68) cell lines. RESULTS: The root methanol extract possessed potent antiplasmodial activity against both P. falciparum 3D7 and K1 strains (IC50 = 2.7 µg/ml, SI = 140; IC50 = 1.7 µg/ml, SI = 236). Apart from the DCM extract of stem bark and root that were found to be inactive (IC50 > 50 µg/ml) against 3D7 strain, all other tested crude extracts exhibited promising (5< IC50 < 15 µg/ml) to moderate (15< IC50 < 50 µg/ml) antiplasmodial activity against both strain. Additionally, only compound C (Parvistone D) exerted promising antiplasmodial activity against 3D7 strain (IC50 = 7.5 µM, SI = 51) whereas compound A, B and D showed moderate antiplasmodial activity against the same strain (20 < IC50 < 100 µM). Interestingly, when tested on K1 strain, compound A, C and D exhibited promising antiplasmodial activity (2 < IC50 < 20 µM) while compound B exhibited moderate activity (IC50 = 26.9 µM). Cytotoxicity study showed that all tested crude extracts and compounds were non-toxic on WRL-68 and HepG2 cell lines (CC50 > 30 µg/ml, CC50 > 10 µM, respectively), except for the hexane and DCM extracts of root, which exerted mild cytotoxicity on HepG2 cell line (IC50 < 30 µg/ml). CONCLUSIONS: This study suggests that the root methanol extract and compound C (Parvistone D) obtained from G. lanceolatus are highly potential for exploitation as source of antimalarial agents. Parvistone D is identified as one of the bioactive styryl lactones found in the plant extract. It is also noteworthy, that the extract and compound were more active against chloroquine-resistant (K1) strain of P. falciparum. Further studies are being carried out to assess their toxicity profile and antimalarial efficacy in animal model.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Goniothalamus/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Linhagem Celular Tumoral , Células do Cúmulo , Relação Dose-Resposta a Droga , Etnofarmacologia , Humanos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Casca de Planta/química , Extratos Vegetais/química , Raízes de Plantas/química
6.
Artigo em Inglês | MEDLINE | ID: mdl-31915453

RESUMO

The emergence of drug-resistant strains of Plasmodium falciparum is the worst catastrophe that has ever confronted the dedicated efforts to eradicate malaria. This urged for searching other alternatives or sensitizers that reverse chloroquine resistance. In this experiment, the potential of andrographolide to inhibit plasmodial growth and reverse CQ resistance was tested in vitro using the SYBRE green-1-based drug sensitivity assay and isobologram technique, respectively. Its safety level toward mammalian cells was screened as well against Vero cells and RBCs using MTT-based drug sensitivity and RBC hemolysis assays, respectively. Its effect against hemozoin formation was screened using ß-hematin formation and heme fractionation assays. Its molecular characters were determined using the conventional tests for the antioxidant effect measurement and the in silico molecular characterization using the online free chemi-informatic Molinspiration software. Results showed that andrographolide has a moderate antiplasmodium effect that does not entitle it to be a substituent for chloroquine. Furthermore, andrographolide ameliorated the sensitivity of the parasite to chloroquine. Besides, it showed an indirect inhibitory effect against hemozoin formation within the parasite and augmented the chloroquine-induced inhibition of hemozoin formation. The study suggests that its chloroquine resistance reversal effect may be due to inhibition of chloroquine accumulation or due to its impact on the biological activity of the parasite. Overall, this in vitro study is a clue for the reliability of andrographolide to be added with chloroquine for reversal of chloroquine resistance and tolerance, but further in vivo studies are recommended to confirm this notion. In spite of its prominent and safe in vitro and in vivo growth inhibitory effect and its in vitro chloroquine resistance reversing effect, it is inapplicable to implement it in malaria chemotherapy to substitute chloroquine or to reverse its resistance.

7.
J Med Food ; 20(2): 152-161, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28146408

RESUMO

Curcumin, a bioactive compound in Curcuma longa, exhibits various pharmacological activities, including antimalarial effects. In silico docking simulation studies suggest that curcumin possesses glycogen synthase kinase-3ß (GSK3ß)-inhibitory properties. The involvement of GSK3 in the antimalarial effects in vivo is yet to be demonstrated. In this study, we aimed to evaluate whether the antimalarial effects of curcumin involve phosphorylation of host GSK3ß. Intraperitoneal administration of curcumin into Plasmodium berghei NK65-infected mice resulted in dose-dependent chemosuppression of parasitemia development. At the highest dose tested (30 mg/kg body weight), both therapeutic and prophylactic administrations of curcumin resulted in suppression exceeding 50% and improved median survival time of infected mice compared to control. Western analysis revealed a 5.5-fold (therapeutic group) and 1.8-fold (prophylactic group) increase in phosphorylation of Ser 9 GSK3ß and 1.6-fold (therapeutic group) and 1.7-fold (prophylactic group) increase in Ser 473 Akt in liver of curcumin-treated infected animals. Following P. berghei infection, levels of pro- and anti-inflammatory cytokines, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-10, and IL-4 were elevated by 7.5-, 35.0-, 33.0-, and 2.2-fold, respectively. Curcumin treatment (therapeutic) caused a significant decrease (by 6.0- and 2.0-fold, respectively) in serum TNF-α and IFN-γ level, while IL-10 and IL-4 were elevated (by 1.4- and 1.8-fold). Findings from the present study demonstrate for the first time that the antimalarial action of curcumin involved inhibition of GSK3ß.


Assuntos
Antimaláricos/administração & dosagem , Curcuma/química , Curcumina/administração & dosagem , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Malária/tratamento farmacológico , Malária/enzimologia , Extratos Vegetais/administração & dosagem , Plasmodium berghei/fisiologia , Animais , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Malária/genética , Malária/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Plasmodium berghei/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
8.
Trop Life Sci Res ; 27(2): 53-71, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27688851

RESUMO

Exploiting natural resources for bioactive compounds is an attractive drug discovery strategy in search for new anti-malarial drugs with novel modes of action. Initial screening efforts in our laboratory revealed two preparations of soil-derived actinomycetes (H11809 and FH025) with potent anti-malarial activities. Both crude extracts showed glycogen synthase kinase 3ß (GSK3ß)-inhibitory activities in a yeast-based kinase assay. We have previously shown that the GSK3 inhibitor, lithium chloride (LiCl), was able to suppress parasitaemia development in a rodent model of malarial infection. The present study aims to evaluate whether anti-malarial activities of H11809 and FH025 involve the inhibition of GSK3ß. The acetone crude extracts of H11809 and FH025 each exerted strong inhibition on the growth of Plasmodium falciparum 3D7 in vitro with 50% inhibitory concentration (IC50) values of 0.57 ± 0.09 and 1.28 ± 0.11 µg/mL, respectively. The tested extracts exhibited Selectivity Index (SI) values exceeding 10 for the 3D7 strain. Both H11809 and FH025 showed dosage-dependent chemo-suppressive activities in vivo and improved animal survivability compared to non-treated infected mice. Western analysis revealed increased phosphorylation of serine (Ser 9) GSK3ß (by 6.79 to 6.83-fold) in liver samples from infected mice treated with H11809 or FH025 compared to samples from non-infected or non-treated infected mice. A compound already identified in H11809 (data not shown), dibutyl phthalate (DBP) showed active anti-plasmodial activity against 3D7 (IC50 4.87 ± 1.26 µg/mL which is equivalent to 17.50 µM) and good chemo-suppressive activity in vivo (60.80% chemo-suppression at 300 mg/kg body weight [bw] dosage). DBP administration also resulted in increased phosphorylation of Ser 9 GSK3ß compared to controls. Findings from the present study demonstrate that the potent anti-malarial activities of H11809 and FH025 were mediated via inhibition of host GSK3ß. In addition, our study suggests that DBP is in part the bioactive component contributing to the anti-malarial activity displayed by H11809 acting through the inhibition of GSK3ß.

9.
Biomed Res Int ; 2016: 1645097, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27525262

RESUMO

Plasmodium falciparum mitogen-activated protein (MAP) kinases, a family of enzymes central to signal transduction processes including inflammatory responses, are a promising target for antimalarial drug development. Our study shows for the first time that the P. falciparum specific MAP kinase 2 (PfMAP2) is colocalized in the nucleus of all of the asexual erythrocytic stages of P. falciparum and is particularly elevated in its phosphorylated form. It was also discovered that PfMAP2 is expressed in its highest quantity during the early trophozoite (ring form) stage and significantly reduced in the mature trophozoite and schizont stages. Although the phosphorylated form of the kinase is always more prevalent, its ratio relative to the nonphosphorylated form remained constant irrespective of the parasites' developmental stage. We have also shown that the TSH motif specifically renders PfMAP2 genetically divergent from the other plasmodial MAP kinase activation sites using Neighbour Joining analysis. Furthermore, TSH motif-specific designed antibody is crucial in determining the location of the expression of the PfMAP2 protein. However, by using immunoelectron microscopy, PPfMAP2 were detected ubiquitously in the parasitized erythrocytes. In summary, PfMAP2 may play a far more important role than previously thought and is a worthy candidate for research as an antimalarial.


Assuntos
Núcleo Celular/enzimologia , Sistema de Sinalização das MAP Quinases , Plasmodium falciparum/enzimologia , Motivos de Aminoácidos , Animais , Anticorpos/química , Antimaláricos/uso terapêutico , Biologia Computacional , Eritrócitos/parasitologia , Técnica Indireta de Fluorescência para Anticorpo , Regulação Enzimológica da Expressão Gênica , Humanos , Malária Falciparum/tratamento farmacológico , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Fosforilação , Filogenia , Proteínas de Protozoários/fisiologia , Coelhos , Especificidade por Substrato , Trofozoítos/enzimologia
10.
Malar J ; 15: 63, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26850038

RESUMO

BACKGROUND: Malaria cases persist in some remote areas in Sabah and Sarawak despite the ongoing and largely successful malaria control programme conducted by the Vector Borne Disease Control Programme, Ministry Of Health, Malaysia. Point mutations in the genes that encode the two enzymes involved in the folate biosynthesis pathway, dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) enzymes confer resistance to pyrimethamine and sulfadoxine respectively, in both Plasmodium falciparum and P. vivax. The aim of the current study was to determine the mutation on both pvdhfr at codon 13, 33, 57, 58, 61, 117, and 173 and pvdhps genes at codon 383 and 553, which are potentially associated with resistance to pyrimethamine and sulfadoxine in P. vivax samples in Sabah. METHODS: Every individual was screened for presence of malaria infection using a commercial rapid dipstick assay, ParaMax-3™ (Zephyr Biomedical, India). Individuals tested positive for P. vivax had blood collected and parasite DNA extracted. The pvdhfr and pvdhps genes were amplified by nested-PCR. Restriction fragment length polymorphism (RFLP) was carried out for detection of specific mutations in pvdhfr at codons 13Leu, 33Leu, 57Ile/Leu, 58Arg, 61Met, 117Asn/Thr, and 173Leu and pvdhps at codons 383Gly and 553Gly. The PCR-RFLP products were analysed using the Agilent 2100 Bioanalyzer (Agilent Technology, AS). RESULTS: A total of 619 and 2119 individuals from Kalabakan and Kota Marudu, respectively participated in the study. In Kalabakan and Kota Marudu, 9.37 and 2.45 % were tested positive for malaria and the positivity for P. vivax infection was 4.2 and 0.52 %, respectively. No mutation was observed at codon 13, 33 and 173 on pvdhfr and at codon 553 on pvdhps gene on samples from Kalabakan and Kota Marudu. One-hundred per cent mutations on pvdhfr were at 57Leu and 117Thr. Mutation at 58Arg and 61Met was observed to be higher in Kota Marudu 72.73 %. Mutation at 383Gly on pvdhps was highest in Kalabakan with 80.77 %. There are four distinct haplotypes of pvdhfr/pvdhps combination. CONCLUSIONS: The presence of triple and quintuple mutation combination suggest that the P. vivax isolates exhibit a high degree of resistant to sulfadoxine, pyrimethamine and sulfadoxine-pyrimethamine combination therapy.


Assuntos
Di-Hidropteroato Sintase/genética , Malária Vivax/parasitologia , Plasmodium vivax , Proteínas de Protozoários/genética , Tetra-Hidrofolato Desidrogenase/genética , Haplótipos/genética , Humanos , Malária Vivax/epidemiologia , Malásia/epidemiologia , Mutação , Plasmodium vivax/genética , Plasmodium vivax/patogenicidade , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição
11.
Artigo em Inglês | MEDLINE | ID: mdl-22299399

RESUMO

Chloroquine (CQ) remains the first line drug for the prevention and treatment of malaria in Malaysia in spite of the fact that resistance to CQ has been observed in Malaysia since the 1960s. CQ-resistance is associated with various mutations in pfcrt, which encodes a putative transporter located in the digestive vacuolar membrane of P. falciparum. Substitution of lysine (K) to threonine (T) at amino acid 76 (K76T) in pfcrt is the primary genetic marker conferring resistance to CQ. To determine the presence of T76 mutation in pfcrt from selected areas of Kalabakan, Malaysia 619 blood samples were screened for P. falciparum, out of which 31 were positive. Blood samples were collected on 3 MM Whatman filter papers and DNA was extracted using QIAmp DNA mini kit. RFLP-PCR for the detection of the CQ-resistant T76 and sensitive K76 genotype was carried out. Twenty-five samples were shown to have the point mutation in pfcrt whereas the remaining samples were classified as CQ-sensitive (wild-type). In view of the fact that CQ is the first line anti-malarial drug in Malaysia, this finding could be an important indication that treatment with CQ may no longer be effective in the future.


Assuntos
Genes de Protozoários/genética , Malária Falciparum/genética , Proteínas de Membrana Transportadoras/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Antimaláricos/farmacologia , Cloroquina/farmacologia , Resistência a Medicamentos/genética , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Malásia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação , Plasmodium falciparum/isolamento & purificação , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...