Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(4): e0265443, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35482823

RESUMO

The flow of nanofluid over a variable thickened stretching sheet is studied in this article. Non-Fourier's heat flux and non-Fick's mass flux are incorporated for heat and mass flow analysis. Silver (Ag) and Copper (Cu) are considered nanoparticles with water as base fluid. The resulting equations are transformed into the dimensionless form using similarity transformation and solved by RK-4 with the shooting method. The impact of the governing parameters on the dimensionless velocity, temperature, concentration, skin friction coefficient, streamlines, and finally isotherms are incorporated. It is observed that increment in power-law index parameter uplifts the fluid flow, heat, and mass transfer. The increase in the magnitude of skin friction coefficient in (x-direction) with wall thickness parameter is high for nanofluid containing silver nanoparticles as compared to copper nanoparticles.


Assuntos
Temperatura Alta , Nanopartículas Metálicas , Cobre , Modelos Teóricos , Prata
2.
Micromachines (Basel) ; 14(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36677110

RESUMO

The present computational model is built to analyze the energy and mass transition rate through a copper and cobalt ferrite water-based hybrid nanofluid (hnf) flow caused by the fluctuating wavy spinning disk. Cobalt ferrite (CoFe2O4) and copper (Cu) nanoparticles (nps) are incredibly renowned in engineering and technological research due to their vast potential applications in nano/microscale structures, devices, materials, and systems related to micro- and nanotechnology. The flow mechanism has been formulated in the form of a nonlinear set of PDEs. That set of PDEs has been further reduced to the system of ODEs through resemblance replacements and computationally solved through the parametric continuation method. The outcomes are verified with the Matlab program bvp4c, for accuracy purposes. The statistical outputs and graphical evaluation of physical factors versus velocity, energy, and mass outlines are given through tables and figures. The configuration of a circulating disk affects the energy transformation and velocity distribution desirably. In comparison to a uniform interface, the uneven spinning surface augments energy communication by up to 15%. The addition of nanostructured materials (cobalt ferrite and copper) dramatically improves the solvent physiochemical characteristics. Furthermore, the upward and downward oscillation of the rotating disc also enhances the velocity and energy distribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...