Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Biol Chem ; 300(7): 107358, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38782206

RESUMO

Aristolochic acids I and II (AA-I/II) are carcinogenic principles of Aristolochia plants, which have been employed in traditional medicinal practices and discovered as food contaminants. While the deleterious effects of AAs are broadly acknowledged, there is a dearth of information to define the mechanisms underlying their carcinogenicity. Following bioactivation in the liver, N-hydroxyaristolactam and N-sulfonyloxyaristolactam metabolites are transported via circulation and elicit carcinogenic effects by reacting with cellular DNA. In this study, we apply DNA adduct analysis, X-ray crystallography, isothermal titration calorimetry, and fluorescence quenching to investigate the role of human serum albumin (HSA) in modulating AA carcinogenicity. We find that HSA extends the half-life and reactivity of N-sulfonyloxyaristolactam-I with DNA, thereby protecting activated AAs from heterolysis. Applying novel pooled plasma HSA crystallization methods, we report high-resolution structures of myristic acid-enriched HSA (HSAMYR) and its AA complexes (HSAMYR/AA-I and HSAMYR/AA-II) at 1.9 Å resolution. While AA-I is located within HSA subdomain IB, AA-II occupies subdomains IIA and IB. ITC binding profiles reveal two distinct AA sites in both complexes with association constants of 1.5 and 0.5 · 106 M-1 for HSA/AA-I versus 8.4 and 9.0 · 105 M-1 for HSA/AA-II. Fluorescence quenching of the HSA Trp214 suggests variable impacts of fatty acids on ligand binding affinities. Collectively, our structural and thermodynamic characterizations yield significant insights into AA binding, transport, toxicity, and potential allostery, critical determinants for elucidating the mechanistic roles of HSA in modulating AA carcinogenicity.

3.
Virus Res ; 341: 199322, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38228190

RESUMO

The emergence of highly infectious pathogens with their potential for triggering global pandemics necessitate the development of effective treatment strategies, including broad-spectrum antiviral therapies to safeguard human health. This study investigates the antiviral activity of emetine, dehydroemetine (DHE), and congeneric compounds against SARS-CoV-2 and HCoV-OC43, and evaluates their impact on the host cell. Concurrently, we assess the potential cardiotoxicity of these ipecac alkaloids. Significantly, our data reveal that emetine and the (-)-R,S isomer of 2,3-dehydroemetine (designated in this paper as DHE4) reduce viral growth at nanomolar concentrations (i.e., IC50 ∼ 50-100 nM), paralleling those required for inhibition of protein synthesis, while calcium channel blocking activity occurs at elevated concentrations (i.e., IC50 ∼ 40-60 µM). Our findings suggest that the antiviral mechanisms primarily involve disruption of host cell protein synthesis and is demonstrably stereoisomer specific. The prospect of a therapeutic window in which emetine or DHE4 inhibit viral propagation without cardiotoxicity renders these alkaloids viable candidates in strategies worthy of clinical investigation.


Assuntos
Alcaloides , Emetina , Emetina/análogos & derivados , Humanos , Emetina/farmacologia , Ipeca/farmacologia , Cardiotoxicidade , Antivirais/toxicidade
4.
Chem Res Toxicol ; 37(2): 340-360, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38194517

RESUMO

Air pollution, tobacco smoke, and red meat are associated with renal cell cancer (RCC) risk in the United States and Western Europe; however, the chemicals that form DNA adducts and initiate RCC are mainly unknown. Aristolochia herbaceous plants are used for medicinal purposes in Asia and worldwide. They are a significant risk factor for upper tract urothelial carcinoma (UTUC) and RCC to a lesser extent. The aristolochic acid (AA) 8-methoxy-6-nitrophenanthro-[3,4-d]-1,3-dioxolo-5-carboxylic acid (AA-I), a component of Aristolochia herbs, contributes to UTUC in Asian cohorts and in Croatia, where AA-I exposure occurs from ingesting contaminated wheat flour. The DNA adduct of AA-I, 7-(2'-deoxyadenosin-N6-yl)-aristolactam I, is often detected in patients with UTUC, and its characteristic A:T-to-T:A mutational signature occurs in oncogenes and tumor suppressor genes in AA-associated UTUC. Identifying DNA adducts in the renal parenchyma and pelvis caused by other chemicals is crucial to gaining insights into unknown RCC and UTUC etiologies. We employed untargeted screening with wide-selected ion monitoring tandem mass spectrometry (wide-SIM/MS2) with nanoflow liquid chromatography/Orbitrap mass spectrometry to detect DNA adducts formed in rat kidneys and liver from a mixture of 13 environmental, tobacco, and dietary carcinogens that may contribute to RCC. Twenty DNA adducts were detected. DNA adducts of 3-nitrobenzanthrone (3-NBA), an atmospheric pollutant, and AA-I were the most abundant. The nitrophenanthrene moieties of 3-NBA and AA-I undergo reduction to their N-hydroxy intermediates to form 2'-deoxyguanosine (dG) and 2'-deoxyadenosine (dA) adducts. We also discovered a 2'-deoxycytidine AA-I adduct and dA and dG adducts of 10-methoxy-6-nitro-phenanthro-[3,4-d]-1,3-dioxolo-5-carboxylic acid (AA-III), an AA-I isomer and minor component of the herbal extract assayed, signifying AA-III is a potent kidney DNA-damaging agent. The roles of AA-III, other nitrophenanthrenes, and nitroarenes in renal DNA damage and human RCC warrant further study. Wide-SIM/MS2 is a powerful scanning technology in DNA adduct discovery and cancer etiology characterization.


Assuntos
Ácidos Aristolóquicos , Carcinoma de Células Renais , Carcinoma de Células de Transição , Neoplasias Renais , Neoplasias da Bexiga Urinária , Ratos , Animais , Humanos , Adutos de DNA , Carcinoma de Células Renais/patologia , Carcinoma de Células de Transição/patologia , Farinha/análise , Neoplasias da Bexiga Urinária/patologia , Triticum , Ácidos Aristolóquicos/química , DNA , Rim/patologia , Neoplasias Renais/induzido quimicamente , Neoplasias Renais/patologia , Fígado/química , Ácidos Carboxílicos , Carcinógenos/química
5.
Am J Physiol Renal Physiol ; 326(2): F227-F240, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38031729

RESUMO

Proximal tubular uptake of aristolochic acid (AA) forms aristolactam (AL)-DNA adducts, which cause a p53/p21-mediated DNA damage response and acute tubular injury. Recurrent AA exposure causes kidney function loss and fibrosis in humans (Balkan endemic nephropathy) and mice and is a model of (acute kidney injury) AKI to chronic kidney disease (CKD) transition. Inhibitors of the proximal tubule sodium-glucose transporter SGLT2 can protect against CKD progression, but their effect on AA-induced kidney injury remains unknown. C57BL/6J mice (15-wk-old) were administered vehicle or AA every 3 days for 3 wk (10 and 3 mg/kg ip in females and males, respectively). Dapagliflozin (dapa, 0.01 g/kg diet) or vehicle was initiated 7 days prior to AA injections. All dapa effects were sex independent, including a robust glycosuria. Dapa lowered urinary kidney-injury molecule 1 (KIM-1) and albumin (both normalized to creatinine) after the last AA injection and kidney mRNA expression of early DNA damage response markers (p53 and p21) 3 wk later at the study end. Dapa also attenuated AA-induced increases in plasma creatinine as well as AA-induced up-regulation of renal pro-senescence, pro-inflammatory and pro-fibrotic genes, and kidney collagen staining. When assessed 1 day after a single AA injection, dapa pretreatment attenuated AL-DNA adduct formation by 10 and 20% in kidney and liver, respectively, associated with reduced p21 expression. Initiating dapa application after the last AA injection also improved kidney outcome but in a less robust manner. In conclusion, the first evidence is presented that pretreatment with an SGLT2 inhibitor can attenuate the AA-induced DNA damage response and subsequent nephropathy.NEW & NOTEWORTHY Recurrent exposure to aristolochic acid (AA) causes kidney function loss and fibrosis in mice and in humans, e.g., in the form of the endemic Balkan nephropathy. Inhibitors of the proximal tubule sodium-glucose transporter SGLT2 can protect against CKD progression, but their effect on AA-induced kidney injury remains unknown. Here we provide the first evidence in a murine model that pretreatment with an SGLT2 inhibitor can attenuate the AA-induced DNA damage response and subsequent nephropathy.


Assuntos
Ácidos Aristolóquicos , Nefropatia dos Bálcãs , Compostos Benzidrílicos , Glucosídeos , Insuficiência Renal Crônica , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Masculino , Feminino , Camundongos , Animais , Nefropatia dos Bálcãs/metabolismo , Nefropatia dos Bálcãs/patologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Transportador 2 de Glucose-Sódio/metabolismo , Modelos Animais de Doenças , Creatinina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Camundongos Endogâmicos C57BL , Rim/metabolismo , Ácidos Aristolóquicos/toxicidade , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/prevenção & controle , Insuficiência Renal Crônica/metabolismo , Fibrose , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Sódio/metabolismo
6.
Nat Rev Cancer ; 22(10): 576-591, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35854147

RESUMO

Aristolochic acids (AAs) are a group of naturally occurring compounds present in many plant species of the Aristolochiaceae family. Exposure to AA is a significant risk factor for severe nephropathy, and urological and hepatobiliary cancers (among others) that are often recurrent and characterized by the prominent mutational fingerprint of AA. However, herbal medicinal products that contain AA continue to be manufactured and marketed worldwide with inadequate regulation, and possible environmental exposure routes receive little attention. As the trade of food and dietary supplements becomes increasingly globalized, we propose that further inaction on curtailing AA exposure will have far-reaching negative effects on the disease trends of AA-associated cancers. Our Review aims to systematically present the historical and current evidence for the mutagenicity and carcinogenicity of AA, and the effect of removing sources of AA exposure on cancer incidence trends. We discuss the persisting challenges of assessing the scale of AA-related carcinogenicity, and the obstacles that must be overcome in curbing AA exposure and preventing associated cancers. Overall, this Review aims to strengthen the case for the implementation of prevention measures against AA's multifaceted, detrimental and potentially fully preventable effects on human cancer development.


Assuntos
Ácidos Aristolóquicos , Neoplasias , Ácidos Aristolóquicos/toxicidade , Humanos , Mutagênese , Neoplasias/induzido quimicamente , Neoplasias/epidemiologia , Saúde Pública
7.
Life (Basel) ; 12(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35743905

RESUMO

In an effort to identify functional-energetic correlations leading to the development of efficient anti-SARS-CoV-2 therapeutic agents, we have designed synthetic analogs of aurintricarboxylic acid (ATA), a heterogeneous polymeric mixture of structurally related linear homologs known to exhibit a host of biological properties, including antiviral activity. These derivatives are evaluated for their ability to interact with a plasma transporter protein (human serum albumin), eukaryotic (yeast) ribosomes, and a SARS-CoV-2 target, the RNA-dependent RNA polymerase (RdRp). The resultant data are critical for characterizing drug distribution, bioavailability, and effective inhibition of host and viral targets. Promising lead compounds are selected on the basis of their binding energetics which have been characterized and correlated with functional activities as assessed by inhibition of RNA replication and protein synthesis. Our results reveal that the activity of heterogeneous ATA is mimicked by linear compounds of defined molecular weight, with a dichlorohexamer salicylic-acid derivative exhibiting the highest potency. These findings are instrumental for optimizing the design of structurally defined ATA analogs that fulfill the requirements of an antiviral drug with respect to bioavailability, homogeneity, and potency, thereby expanding the arsenal of therapeutic regimens that are currently available to address the urgent need for effective SARS-CoV-2 treatment strategies.

8.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074766

RESUMO

Altered cellular metabolism in kidney proximal tubule (PT) cells plays a critical role in acute kidney injury (AKI). The transcription factor Krüppel-like factor 6 (KLF6) is rapidly and robustly induced early in the PT after AKI. We found that PT-specific Klf6 knockdown (Klf6PTKD) is protective against AKI and kidney fibrosis in mice. Combined RNA and chromatin immunoprecipitation sequencing analysis demonstrated that expression of genes encoding branched-chain amino acid (BCAA) catabolic enzymes was preserved in Klf6PTKD mice, with KLF6 occupying the promoter region of these genes. Conversely, inducible KLF6 overexpression suppressed expression of BCAA genes and exacerbated kidney injury and fibrosis in mice. In vitro, injured cells overexpressing KLF6 had similar decreases in BCAA catabolic gene expression and were less able to utilize BCAA. Furthermore, knockdown of BCKDHB, which encodes one subunit of the rate-limiting enzyme in BCAA catabolism, resulted in reduced ATP production, while treatment with BCAA catabolism enhancer BT2 increased metabolism. Analysis of kidney function, KLF6, and BCAA gene expression in human chronic kidney disease patients showed significant inverse correlations between KLF6 and both kidney function and BCAA expression. Thus, targeting KLF6-mediated suppression of BCAA catabolism may serve as a key therapeutic target in AKI and kidney fibrosis.


Assuntos
Injúria Renal Aguda/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Rim/lesões , Rim/metabolismo , Fator 6 Semelhante a Kruppel/metabolismo , Injúria Renal Aguda/patologia , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Inflamação , Rim/patologia , Túbulos Renais Proximais/metabolismo , Fator 6 Semelhante a Kruppel/genética , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Fatores de Transcrição/metabolismo
9.
Cancer Epidemiol Biomarkers Prev ; 30(2): 317-325, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33277322

RESUMO

BACKGROUND: Aristolochic acids (AA) and arsenic are chemical carcinogens associated with urothelial carcinogenesis. Here we investigate the combined effects of AA and arsenic toward the risk of developing upper tract urothelial carcinoma (UTUC). METHODS: Hospital-based (n = 89) and population-based (2,921 cases and 11,684 controls) Taiwanese UTUC cohorts were used to investigate the association between exposure to AA and/or arsenic and the risk of developing UTUC. In the hospital cohort, AA exposure was evaluated by measuring aristolactam-DNA adducts in the renal cortex and by identifying A>T TP53 mutations in tumors. In the population cohort, AA exposure was determined from prescription health insurance records. Arsenic levels were graded from 0 to 3 based on concentrations in well water and the presence of arseniasis-related diseases. RESULTS: In the hospital cohort, 43, 26, and 20 patients resided in grade 0, 1+2, and 3 arseniasis-endemic areas, respectively. Aristolactam-DNA adducts were present in >90% of these patients, indicating widespread AA exposure. A>T mutations in TP53 were detected in 28%, 44%, and 22% of patients residing in grade 0, 1+2, and 3 arseniasis-endemic areas, respectively. Population studies revealed that individuals who consumed more AA-containing herbs had a higher risk of developing UTUC in both arseniasis-endemic and nonendemic areas. Logistic regression showed an additive effect of AA and arsenic exposure on the risk of developing UTUC. CONCLUSIONS: Exposure to both AA and arsenic acts additively to increase the UTUC risk in Taiwan. IMPACT: This is the first study to investigate the combined effect of AA and arsenic exposure on UTUC.


Assuntos
Ácidos Aristolóquicos/toxicidade , Arsênio/toxicidade , Carcinoma de Células de Transição/induzido quimicamente , Neoplasias da Bexiga Urinária/induzido quimicamente , Idoso , Carcinoma de Células de Transição/epidemiologia , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/patologia , Estudos de Casos e Controles , Adutos de DNA , Feminino , Humanos , Incidência , Masculino , Gradação de Tumores , Taiwan/epidemiologia , Neoplasias da Bexiga Urinária/epidemiologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
10.
Adv Exp Med Biol ; 1241: 139-166, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32383120

RESUMO

Environmental and iatrogenic exposures contribute significantly to human diseases, including cancer. The list of known human carcinogens has recently been extended by the addition of aristolochic acids (AAs). AAs occur primarily in Aristolochia herbs, which are used extensively in folk medicines, including Traditional Chinese Medicine. Ingestion of AAs results in chronic renal disease and cancer. Despite importation bans imposed by certain countries, herbal remedies containing AAs are readily available for purchase through the internet. With recent advancements in mass spectrometry, next generation sequencing, and the development of integrated organs-on-chips, our knowledge of cancers associated with AA exposure, and of the mechanisms involved in AA toxicities, has significantly improved. DNA adduction plays a central role in AA-induced cancers; however, significant gaps remain in our knowledge as to how cellular enzymes promote activation of AAs and how the reactive species selectively bind to DNA and kidney proteins. In this review, I describe pathways for AAs biotransformation, adduction, and mutagenesis, emphasizing novel methods and ideas contributing to our present understanding of AA toxicities in humans.


Assuntos
Ácidos Aristolóquicos/efeitos adversos , Ácidos Aristolóquicos/metabolismo , Medicamentos de Ervas Chinesas/efeitos adversos , Medicamentos de Ervas Chinesas/metabolismo , Aristolochia/efeitos adversos , Aristolochia/química , Ácidos Aristolóquicos/toxicidade , Biotransformação , Medicamentos de Ervas Chinesas/toxicidade , Humanos , Medicina Tradicional Chinesa/efeitos adversos
11.
Environ Mol Mutagen ; 60(9): 792-806, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31374128

RESUMO

Aristolochic acids (AAs) are human nephrotoxins and carcinogens found in concoctions of Aristolochia plants used in traditional medicinal practices worldwide. Genotoxicity of AAs is associated with the formation of active species catalyzed by metabolic enzymes, the full repertoire of which is unknown. Recently, we provided evidence that sulfonation is important for bioactivation of AAs. Here, we employ Salmonella typhimurium umu tester strains expressing human N-acetyltransferases (NATs) and sulfotransferases (SULTs), to study the role of conjugation reactions in the genotoxicities of N-hydroxyaristolactams (AL-I-NOH and AL-II-NOH), metabolites of AA-I and AA-II. Both N-hydroxyaristolactams show stronger genotoxic effects in umu strains expressing human NAT1 and NAT2, than in the parent strain. Additionally, AL-I-NOH displays increased genotoxicity in strains expressing human SULT1A1 and SULT1A2, whereas AL-II-NOH shows enhanced genotoxicity in SULT1A1/2 and SULT1A3 strains. 2,6-Dichloro-4-nitrophenol, SULTs inhibitor, reduced umuC gene expression induced by N-hydroxyaristolactams in SULT1A2 strain. N-hydroxyaristolactams are also mutagenic in parent strains, suggesting that an additional mechanism(s) may contribute to their genotoxicities. Accordingly, using putative SULT substrates and inhibitors, we found that cytosols obtained from human kidney HK-2 cells activate N-hydroxyaristolactams in aristolactam-DNA adducts with the limited involvement of SULTs. Removal of low-molecular-weight reactants in the 3.5-10 kDa range inhibits the formation of aristolactam-DNA by 500-fold, which could not be prevented by the addition of cofactors for SULTs and NATs. In conclusion, our results demonstrate that the genotoxicities of N-hydroxyaristolactams depend on the cell type and involve not only sulfonation but also N,O-acetyltransfer and an additional yet unknown mechanism(s). Environ. Mol. Mutagen. 2019. © 2019 Wiley Periodicals, Inc.


Assuntos
Ácidos Aristolóquicos/metabolismo , Ácidos Aristolóquicos/toxicidade , Acetiltransferases/metabolismo , Arilamina N-Acetiltransferase/metabolismo , Arilsulfotransferase/metabolismo , Carcinógenos/toxicidade , Linhagem Celular , DNA/efeitos dos fármacos , Adutos de DNA/genética , Humanos , Mutagênicos/toxicidade , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/metabolismo , Sulfotransferases/metabolismo
12.
J Biomol Struct Dyn ; 37(17): 4407-4418, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30488779

RESUMO

Transient protein-protein complexes are of great importance for organizing multiple enzymatic reactions into productive reaction pathways. Base excision repair (BER), a process of critical importance for maintaining genome stability against a plethora of DNA-damaging factors, involves several enzymes, including DNA glycosylases, AP endonucleases, DNA polymerases, DNA ligases and accessory proteins acting sequentially on the same damaged site in DNA. Rather than being assembled into one stable multisubunit complex, these enzymes pass the repair intermediates between them in a highly coordinated manner. In this review, we discuss the nature and the role of transient complexes arising during BER as deduced from structural and kinetic data. Almost all of the transient complexes are DNA-mediated, although some may also exist in solution and strengthen under specific conditions. The best-studied example, the interactions between DNA glycosylases and AP endonucleases, is discussed in more detail to provide a framework for distinguishing between stable and transient complexes based on the kinetic data. Communicated by Ramaswamy H. Sarma.


Assuntos
Reparo do DNA , Complexos Multiproteicos/metabolismo , Animais , DNA Glicosilases/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Humanos , Ligação Proteica , Multimerização Proteica
13.
JCI Insight ; 2(22)2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29202460

RESUMO

Environmental exposures pose a significant threat to human health. However, it is often difficult to study toxicological mechanisms in human subjects due to ethical concerns. Plant-derived aristolochic acids are among the most potent nephrotoxins and carcinogens discovered to date, yet the mechanism of bioactivation in humans remains poorly understood. Microphysiological systems (organs-on-chips) provide an approach to examining the complex, species-specific toxicological effects of pharmaceutical and environmental chemicals using human cells. We microfluidically linked a kidney-on-a-chip with a liver-on-a-chip to determine the mechanisms of bioactivation and transport of aristolochic acid I (AA-I), an established nephrotoxin and human carcinogen. We demonstrate that human hepatocyte-specific metabolism of AA-I substantially increases its cytotoxicity toward human kidney proximal tubular epithelial cells, including formation of aristolactam adducts and release of kidney injury biomarkers. Hepatic biotransformation of AA-I to a nephrotoxic metabolite involves nitroreduction, followed by sulfate conjugation. Here, we identify, in a human tissue-based system, that the sulfate conjugate of the hepatic NQO1-generated aristolactam product of AA-I (AL-I-NOSO3) is the nephrotoxic form of AA-I. This conjugate can be transported out of liver via MRP membrane transporters and then actively transported into kidney tissue via one or more organic anionic membrane transporters. This integrated microphysiological system provides an ex vivo approach for investigating organ-organ interactions, whereby the metabolism of a drug or other xenobiotic by one tissue may influence its toxicity toward another, and represents an experimental approach for studying chemical toxicity related to environmental and other toxic exposures.


Assuntos
Ácidos Aristolóquicos/toxicidade , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Animais , Biomarcadores , Biotransformação , Carcinógenos/toxicidade , Dicumarol/metabolismo , Células Epiteliais , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Rim/lesões , Masculino , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Néfrons/efeitos dos fármacos , Néfrons/metabolismo , Patologia Molecular/instrumentação , Patologia Molecular/métodos , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica , Xenobióticos
14.
Exp Cell Res ; 349(1): 101-108, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27720671

RESUMO

3-Nitrobenzanthrone (3-NBA), a potential human carcinogen, is present in diesel exhaust. The main metabolite of 3-NBA, 3-aminobenzanthrone, was detected in urine of miners occupationally exposed to diesel emissions. Environmental and occupational factors play an important role in development of bladder cancer (BC), one of the most frequent malignancies. It is expected that exposure of urothelium to 3-NBA and its metabolites may induce BC initiation and/or progression. To test this hypothesis, we studied geno- and cytotoxicity of 3-NBA using an in vitro BC model. 3-NBA induced higher levels of DNA adducts, reactive oxygen species and DNA breaks in aggressive T24 cells than in more differentiated RT4 cells. To understand the nature of this difference we examined the role of several enzymes that were identified as 3-NBA bio activators. However, the difference in DNA adduct formation cannot be directly linked to the different activity of any of the examined enzymes. Conversely, the difference of tested cell lines in p53 status can partly explain the distinct levels of 3-NBA-DNA adducts and DNA damage induced by 3-NBA. Therefore, we assume that more aggressive T24 cells are more predisposed for DNA adduct formation, DNA damage and, possibly, mutations and as a result further tumorigenesis.


Assuntos
Benzo(a)Antracenos/toxicidade , Dano ao DNA , Poluentes Ambientais/toxicidade , Neoplasias da Bexiga Urinária/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Adutos de DNA/metabolismo , Reparo do DNA/efeitos dos fármacos , Humanos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo
15.
Carcinogenesis ; 37(7): 647-655, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27207664

RESUMO

Aristolochic acids (AA) are implicated in the development of chronic renal disease and upper urinary tract carcinoma in humans. Using in vitro approaches, we demonstrated that N-hydroxyaristolactams, metabolites derived from partial nitroreduction of AA, require sulfotransferase (SULT)-catalyzed conjugation with a sulfonyl group to form aristolactam-DNA adducts. Following up on this observation, bioactivation of AA-I and N-hydroxyaristolactam I (AL-I-NOH) was studied in human kidney (HK-2) and skin fibroblast (GM00637) cell lines. Pentachlorophenol, a known SULT inhibitor, significantly reduced cell death and aristolactam-DNA adduct levels in HK-2 cells following exposure to AA-I and AL-I-NOH, suggesting a role for Phase II metabolism in AA activation. A gene knockdown, siRNA approach was employed to establish the involvement of selected SULTs and nitroreductases in AA-I bioactivation. Silencing of SULT1A1 and PAPSS2 led to a significant decrease in aristolactam-DNA levels in both cell lines following exposure to AA-I, indicating the critical role for sulfonation in the activation of AA-I in vivo Since HK-2 cells proved relatively resistant to knockdown with siRNAs, gene silencing of xanthine oxidoreductase, cytochrome P450 oxidoreductase and NADPH:quinone oxidoreductase was conducted in GM00637 cells, showing a significant increase, decrease and no effect on aristolactam-DNA levels, respectively. In GM00637 cells exposed to AL-I-NOH, suppressing the SULT pathway led to a significant decrease in aristolactam-DNA formation, mirroring data obtained for AA-I. We conclude from these studies that SULT1A1 is involved in the bioactivation of AA-I through the sulfonation of AL-I-NOH, contributing significantly to the toxicities of AA observed in vivo.


Assuntos
Ácidos Aristolóquicos/metabolismo , Arilsulfotransferase/genética , Complexos Multienzimáticos/genética , Sulfato Adenililtransferase/genética , Arilsulfotransferase/antagonistas & inibidores , Arilsulfotransferase/metabolismo , Carcinógenos/metabolismo , Carcinógenos/toxicidade , DNA/genética , DNA/metabolismo , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Rim/metabolismo , Rim/patologia , Complexos Multienzimáticos/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Pentaclorofenol/farmacologia , RNA Interferente Pequeno , Sulfato Adenililtransferase/metabolismo , Xantina Desidrogenase/metabolismo
16.
Toxicol Res (Camb) ; 4(4): 763-776, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26366284

RESUMO

Aristolochic acids (AA) are found in all Aristolochia herbaceous plants, many of which have been used worldwide for medicinal purposes for centuries. AA are causal agents of the chronic kidney disease entity termed aristolochic acid nephropathy (AAN) and potent upper urinary tract carcinogens in humans. AAN and upper urinary tract cancers are endemic in rural areas of Croatia and other Balkan countries where exposure to AA occurs through the ingestion of home-baked bread contaminated with Aristolochia seeds. In Asia, exposure to AA occurs through usage of traditional Chinese medicinal herbs containing Aristolochia. Despite warnings from regulatory agencies, traditional Chinese herbs containing AA continue to be used world-wide. In this review, we highlight novel approaches to quantify exposure to AA, by analysis of aristolactam (AL) DNA adducts, employing ultraperformance liquid chromatography-electrospray ionization/multistage mass spectrometry (UPLC-ESI/MSn). DNA adducts are a measure of internal exposure to AA and serve as an important end point for cross-species extrapolation of toxicity data and human risk assessment. The level of sensitivity of UPLC-ESI/MSn surpasses the limits of detection of AL-DNA adducts obtained by 32P-postlabeling techniques, the most widely employed methods for detecting putative DNA adducts in humans. AL-DNA adducts can be measured by UPLC-ESI/MS3, not only in fresh frozen renal tissue, but also in formalin-fixed, paraffin-embedded (FFPE) samples, an underutilized biospecimen for assessing chemical exposures, and in exfoliated urinary cells, a non-invasive approach. The frequent detection of AL DNA adducts in renal tissues, combined with the characteristic mutational spectrum induced by AA in TP53 and other genes provides compelling data for a role of AA in upper urothelial tract cancer.

17.
Carcinogenesis ; 35(8): 1814-22, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24743514

RESUMO

Aristolochic acids are potent human carcinogens; the role of phase II metabolism in their bioactivation is unclear. Accordingly, we tested the ability of the partially reduced metabolites, N-hydroxyaristolactams (AL-NOHs), and their N-O-sulfonated and N-O-acetylated derivatives to react with DNA to form aristolactam-DNA adducts. AL-NOHs displayed little or no activity in this regard while the sulfo- and acetyl compounds readily form DNA adducts, as detected by (32)P-post-labeling analysis. Mouse hepatic and renal cytosols stimulated binding of AL-NOHs to DNA in the presence of adenosine 3'-phosphate 5'-phosphosulfate (PAPS) but not of acetyl-CoA. Using Time of Flight liquid chromatography/mass spectrometry, N-hydroxyaristolactam I formed the sulfated compound in the presence of PAPS and certain human sulfotransferases, SULT1B1 >>> SULT1A2 > SULT1A1 >>> SULT1A3. The same pattern of SULT reactivity was observed when N-hydroxyaristolactam I was incubated with these enzymes and PAPS and the reaction was monitored by formation of aristolactam-DNA adducts. In the presence of human NAD(P)H: quinone oxidoreductase, the ability of aristolochic acid I to bind DNA covalently was increased significantly by addition of PAPS and SULT1B1. We conclude from these studies that AL-NOHs, formed following partial nitroreduction of aristolochic acids, serve as substrates for SULT1B1, producing N-sulfated esters, which, in turn, are converted to highly active species that react with DNA and, potentially, cellular proteins, resulting in the genotoxicity and nephrotoxicity associated with ingestion of aristolochic acids by humans.


Assuntos
Ácidos Aristolóquicos/farmacologia , Carcinógenos/farmacologia , Adutos de DNA/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Animais , Arilsulfotransferase/metabolismo , Western Blotting , Proliferação de Células , Células Cultivadas , Citosol/metabolismo , Adutos de DNA/metabolismo , Etanolaminas , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Rim/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Modelos Moleculares , Estrutura Molecular , NAD(P)H Desidrogenase (Quinona)/metabolismo , Oxirredutases/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ácidos Esteáricos , Sulfotransferases/metabolismo
18.
Sci Transl Med ; 5(197): 197ra102, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23926200

RESUMO

In humans, exposure to aristolochic acid (AA) is associated with urothelial carcinoma of the upper urinary tract (UTUC). Exome sequencing of UTUCs from 19 individuals with documented exposure to AA revealed a remarkably large number of somatic mutations and an unusual mutational signature attributable to AA. Most of the mutations (72%) in these tumors were A:T-to-T:A transversions, located predominantly on the nontranscribed strand, with a strong preference for deoxyadenosine in a consensus sequence (T/CAG). This trinucleotide motif overlaps the canonical splice acceptor site, possibly accounting for the excess of splice site mutations observed in these tumors. The AA mutational fingerprint was found frequently in oncogenes and tumor suppressor genes in AA-associated UTUC. The AA mutational signature was observed in one patient's tumor from a UTUC cohort without previous indication of AA exposure. Together, these results directly link an established environmental mutagen to cancer through genome-wide sequencing and highlight its power to reveal individual exposure to carcinogens.


Assuntos
Ácidos Aristolóquicos/efeitos adversos , Exoma/genética , Mutação/efeitos dos fármacos , Mutação/genética , Análise de Sequência de DNA , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Urológicas/diagnóstico , Neoplasias Urológicas/genética , Neoplasias Urológicas/patologia , Urotélio/patologia
19.
Proc Natl Acad Sci U S A ; 109(21): 8241-6, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22493262

RESUMO

Aristolochic acid, a potent human carcinogen produced by Aristolochia plants, is associated with urothelial carcinoma of the upper urinary tract (UUC). Following metabolic activation, aristolochic acid reacts with DNA to form aristolactam (AL)-DNA adducts. These lesions concentrate in the renal cortex, where they serve as a sensitive and specific biomarker of exposure, and are found also in the urothelium, where they give rise to a unique mutational signature in the TP53 tumor-suppressor gene. Using AL-DNA adducts and TP53 mutation spectra as biomarkers, we conducted a molecular epidemiologic study of UUC in Taiwan, where the incidence of UUC is the highest reported anywhere in the world and where Aristolochia herbal remedies have been used extensively for many years. Our study involves 151 UUC patients, with 25 patients with renal cell carcinomas serving as a control group. The TP53 mutational signature in patients with UUC, dominated by otherwise rare A:T to T:A transversions, is identical to that observed in UUC associated with Balkan endemic nephropathy, an environmental disease. Prominent TP53 mutational hotspots include the adenine bases of (5')AG (acceptor) splice sites located almost exclusively on the nontranscribed strand. A:T to T:A mutations also were detected at activating positions in the FGFR3 and HRAS oncogenes. AL-DNA adducts were present in the renal cortex of 83% of patients with A:T to T:A mutations in TP53, FGFR3, or HRAS. We conclude that exposure to aristolochic acid contributes significantly to the incidence of UUC in Taiwan, a finding with significant implications for global public health.


Assuntos
Ácidos Aristolóquicos/efeitos adversos , Carcinoma de Células Renais/induzido quimicamente , Carcinoma de Células de Transição/induzido quimicamente , Medicamentos de Ervas Chinesas/efeitos adversos , Neoplasias Renais/induzido quimicamente , Neoplasias Ureterais/induzido quimicamente , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Renais/epidemiologia , Carcinoma de Células Renais/genética , Carcinoma de Células de Transição/epidemiologia , Carcinoma de Células de Transição/genética , Adutos de DNA/genética , Feminino , Humanos , Neoplasias Renais/epidemiologia , Neoplasias Renais/genética , Masculino , Pessoa de Meia-Idade , Mutagênicos/efeitos adversos , Oncogenes/efeitos dos fármacos , Oncogenes/genética , Taiwan/epidemiologia , Proteína Supressora de Tumor p53/genética , Neoplasias Ureterais/epidemiologia , Neoplasias Ureterais/genética , Urotélio/efeitos dos fármacos , Urotélio/patologia
20.
FEBS J ; 276(18): 5149-62, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19674107

RESUMO

Human 8-oxoguanine-DNA glycosylase (OGG1) efficiently removes mutagenic 8-oxo-7,8-dihydroguanine (8-oxoGua) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine when paired with cytosine in oxidatively damaged DNA. Excision of 8-oxoGua mispaired with adenine may lead to G-->T transversions. Post-translational modifications such as phosphorylation could affect the cellular distribution and enzymatic activity of OGG1. Mutations and polymorphisms of OGG1 may affect the enzymatic activity and have been associated with increased risk of several cancers. In this study, we used double-stranded oligodeoxynucleotides containing 8-oxoGua:Cyt or 8-oxoGua:Ade pairs, as well as gamma-irradiated calf thymus DNA, to investigate the kinetics and substrate specificity of several known OGG1 polymorphic variants and phosphomimetic Ser-->Glu mutants. Among the polymorphic variants, A288V and S326C displayed opposite-base specificity similar to that of wild-type OGG1, whereas OGG1-D322N was 2.3-fold more specific for the correct opposite base than the wild-type enzyme. All phosphomimetic mutants displayed approximately 1.5-3-fold lower ability to remove 8-oxoGua in both assays, whereas the substrate specificity of the phosphomimetic mutants was similar to that of the wild-type enzyme. OGG1-S326C efficiently excised 8-oxoGua from oligodeoxynucleotides and 2,6-diamino-4-hydroxy-5-formamidopyrimidine from gamma-irradiated DNA, but excised 8-oxoG rather inefficiently from gamma-irradiated DNA. Otherwise, kcat values for 8-oxoGua excision obtained from both types of experiments were similar for all OGG1 variants studied. It is known that the human AP endonuclease APEX1 can stimulate OGG1 activity by increasing its turnover rate. However, when wild-type OGG1 was replaced by one of the phosphomimetic mutants, very little stimulation of 8-oxoGua removal was observed in the presence of APEX1.


Assuntos
DNA Glicosilases/metabolismo , Sequência de Aminoácidos , DNA Glicosilases/química , Humanos , Ligação de Hidrogênio , Cinética , Mutagênese , Fosforilação , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...