Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Radioact ; 134: 21-6, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24631918

RESUMO

An approach to estimate the rate of biogenic sedimentation in the Black Sea using the naturally occurring radionuclide (40)K has been considered. It allows assessment of the contribution of suspended matter of biological origin to the overall sediment accumulation in the Black Sea coastal, shelf and deep-water areas. Based upon this method, a relationship between the biogenic fraction of the seabed sediments and the water depth has been established with a view to differentiating the contributions of allochthonous and autochthonous suspended matter to the sedimentation rate. Overall, (40)K can be considered as an easily applicable proxy to assess sedimentation rate of biogenic fraction of particulate matter in marine environments.


Assuntos
Sedimentos Geológicos/análise , Radioisótopos de Potássio/análise , Poluentes Radioativos da Água/análise , Mar Negro , Monitoramento Ambiental
2.
J Environ Radioact ; 124: 50-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23639695

RESUMO

The recent radionuclide measurements have showed that concentrations of the Chernobyl-derived (137)Cs and (90)Sr in the surface Black Sea waters are still relatively high, reaching 56 and 32 Bq m(-3), respectively. This is comparable or even exceeds the pre-Chernobyl levels (∼16 Bq (137)Cs and 22 Bq (90)Sr per m(3) as the basin-wide average values). The measurements have revealed that the Black Sea continues to receive Chernobyl radionuclides, particularly (90)Sr, by the runoff from the Dnieper River. An additional source of (90)Sr and (137)Cs was found in the area adjacent to the Kerch Strait that connects the Black Sea and the Sea of Azov. This may be caused by the inflow of the contaminated Dnieper waters, which come to this area through the North-Crimean Canal. The long-term monitoring of (137)Cs and (90)Sr concentration in the Black Sea surface waters and in the benthic brown seaweed Cystoseira sp., in comparison with the earlier published sediment records of the radionuclides, have showed signs of a secondary radioactive contamination, which has started to increase since the late 1990's. This may be the result of the combined effect of a higher input of radionuclides from the rivers in 1995-1999 due to an increased runoff; and a slow transport of the particulate bound radionuclides from the watersheds followed by their desorption in seawater from the riverine suspended matter and remobilization from the sediments adjacent to the river mouths.


Assuntos
Radioisótopos de Césio/análise , Radioisótopos de Estrôncio/análise , Poluentes Radioativos da Água/análise , Mar Negro , Acidente Nuclear de Chernobyl , Monitoramento de Radiação , Rios , Movimentos da Água , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...