Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol (Mosk) ; 27(1): 192-210, 1993.
Artigo em Russo | MEDLINE | ID: mdl-8387153

RESUMO

An analogue of netropsin has been synthesized consisting of two N-propylpyrrolcarboxamide units linked covalently to a copper-chelating tripeptide Gly-Gly-L-His by means of two and three glycine residues. Binding to DNA and synthetic polynucleotides of netropsin analogue containing three glycine residues between Gly-Gly-L-His tripeptide and the N-end of netropsin analogue (His-Nt) has been studied. It is shown that this netropsin analogue chelates a copper ion with 1:1 stoichiometry, similar to a free Gly-Gly-L-His peptide. It is found that this netropsin analogue occupies 3 to 4 base pairs upon binding to poly(dA).poly(dT) and poly[d(AT)].poly[d(AT)] polymers, irrespective of whether it binds in Cu(2+)-ligated or unligated forms. Binding constants and binding site sizes have been calculated for netropsin analogue complexes with DNA, poly(dA).poly(dT) and poly[d(AT)].poly[d(AT)] polymers at the [Cu2+]/[His-Nt] ratio equal to 0 and 1.0. In the three-component system including His-Nt and Cu(2+)-His-Nt, cooperative effects are recognized which can be explained by heterodimer generation on interaction of His-Nt and Cu(2+)-His-Nt at adjacent binding sites.


Assuntos
Cobre/química , DNA/metabolismo , Netropsina/síntese química , Oligopeptídeos/química , Sequência de Aminoácidos , Sítios de Ligação , Quelantes , Ligantes , Dados de Sequência Molecular , Netropsina/análogos & derivados , Netropsina/metabolismo
2.
Mol Biol (Mosk) ; 26(6): 1274-97, 1992.
Artigo em Russo | MEDLINE | ID: mdl-1337138

RESUMO

Experimental data are reported on DNA-cleaving activity of the synthetic netropsin analogs consisting of the two N-propylpyrrole carboxamide units linked covalently through two or three glycine residues to a copper-chelating tripeptide glycyl-glycyl-L-histidine. Incubation of DNA restriction fragment and netropsin analog in the presence of ascorbate, hydrogen peroxide and Cu2+ ions resulted in selective cleavage of the DNA at or near the preferred sites for binding of netropsin analog. A similar cleavage pattern is observed after X-ray irradiation of DNA complexes with netropsin analogs tethered with Cu2+ ions. The cleavage patterns are found to be dependent on the length of the connecting chain between the histidine-containing tripeptide and netropsin analog. The netropsin analog containing three glycine residues in the connecting chain, but not the analog with a shorter linker chain, can generate an intense cleavage of one of the two polynucleotide chains at a position corresponding to the presumed binding site for the dimeric ligand species. More than 50% of the total DNA can be cleaved at this position after X-ray irradiation. From analysis of the nucleotide sequences surrounding the preferred cleavage site on several DNA fragments we found that the consensus is 5'-TTTTNCA*AAA-3', where N is an arbitrary nucleotide. The Cu(2+)-mediated cleavage of DNA occurs at the second adenine (indicated by an asterisk) from the 5'-end of the sequence. The greatest cleavage activity is observed when the molar ratio of Cu2+ to the netropsin analog is equal to 0.5. Evidently, the Cu(2+)-ligated and unligated oligopeptide species interacts with each other to form a heterodimer bound to DNA at the cleavage site. To test the validity of this model we have studied the binding of unligated netropsin analog and netropsin analog complexed with Cu2+ ion to a self-complementary oligonucleotide 5'-GCGTTTTGCAAAACGC-3'. It is found that binding of Cu(2+)-ligated netropsin analog to the DNA oligomer preincubated with unligated form of the oligopeptide is a cooperative process for which interactions between the two bound ligands are responsible. The cooperativity parameter is estimated to be on the order of factor 6. Finally, a model is proposed in which a heterodimer stabilized by interligand beta-sheet binds in the minor DNA groove.


Assuntos
Cobre/química , DNA/química , Netropsina/farmacologia , Oligopeptídeos/química , Sequência de Aminoácidos , Sequência de Bases , Quelantes , Eletroforese , Dados de Sequência Molecular , Netropsina/análogos & derivados
3.
Mol Biol (Mosk) ; 25(3): 706-17, 1991.
Artigo em Russo | MEDLINE | ID: mdl-1944253

RESUMO

Cystine peptide dimer (Lys-Gly-Val-Cys-Val-N2H2Dns)2 with S-S bridge was synthesized and its interactions with DNA and synthetic polynucleotides have been studied by optical spectroscopy methods. By recording fluorescent titration curves we have shown that the affinity of the peptide to different synthetic polynucleotides decreases in the order: poly(dG).poly(dC) greater than poly(dA).poly(dT) greater than poly(dGC).poly(dGC). The stability of complexes to increasing concentrations of NaCl diminishes in the same order. The association constant is about 20-fold greater for peptide binding to poly(dG).poly(dC) than to poly(dA).poly(dT). By using circular dichroism and fluorescence measurements we have shown that the peptide competes for the binding sites on DNA with two minor-groove binding antibiotics--distamycin A and sybiromycin. These results have suggested that the peptide also binds in the DNA minor groove. Investigation of the interactions between such peptides and DNA may be useful for constructing ligands with combined specificity to DNA.


Assuntos
Aminoglicosídeos , Cisteína/química , DNA/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Antibióticos Antineoplásicos/metabolismo , Sequência de Bases , Ligação Competitiva , Dicroísmo Circular , Distamicinas/metabolismo , Dados de Sequência Molecular , Espectrometria de Fluorescência
4.
Mol Biol (Mosk) ; 23(6): 1616-37, 1989.
Artigo em Russo | MEDLINE | ID: mdl-2561177

RESUMO

In the present communication design, synthesis and DNA binding activities of three bis-netropsins and two netropsin analogs containing two N-propylpyrrolecarboxamide fragments linked covalently to peptides Gly-Gly-(analog I) and Val-Val-Val-Gly-Gly-(analog II) are reported. Each bis-netropsin consists of two netropsin-like fragments attached to peptides -Gly-Cys-Gly-NH2 (compound IIIa), H-Gly-Cys-Gly-Gly-Gly-(compound IV) or Gly-Cys-Sar-NH2 (compound IIIb) which are linked symmetrically via S-S bonds. Physico-chemical studies show that each bis-netropsin carries 6 AT-specific reaction centers and covers approximately 10 base pairs upon binding to poly(dA).poly(dT). This indicates that two netropsin-like fragments of the bis-netropsin molecule are implicated in specific interaction with DNA base pairs. The peptide fragments of bis-netropsins IIIa and IV form small beta-sheets containing two-GC-specific reaction centers. The DNase I cleavage patterns of bis-netropsin-DNA complexes visualized by high resolution gel electrophoresis show that the preferred binding sites for bis-netropsins IIIa and IV are identical and contain two runs of three or more AT pairs separated by two GC pairs. Specificity determinants of netropsin analog II binding in the beta-associated dimeric form are identical to those of bis-netropsin IIIa thereby indicating that there is a similarity in the structure of complexes formed by these ligands with DNA. In the monomeric form analog II exhibits binding specificity identical to that of analog I. Replacement of C-terminal glycine residues by sarcosines in the peptide fragments of bis-netropsin IIIa leads to a decrease in the affinity of ligand for DNA.


Assuntos
DNA/metabolismo , Guanidinas/síntese química , Ligantes , Netropsina/síntese química , Composição de Bases , Sequência de Bases , Fenômenos Químicos , Química , Dicroísmo Circular , Hidrólise , Dados de Sequência Molecular , Netropsina/análogos & derivados , Netropsina/metabolismo , Conformação de Ácido Nucleico , Polidesoxirribonucleotídeos/síntese química , Polidesoxirribonucleotídeos/metabolismo
5.
Mol Biol (Mosk) ; 23(6): 1558-80, 1989.
Artigo em Russo | MEDLINE | ID: mdl-2633035

RESUMO

Design, synthesis and DNA binding activity of a nonlinear 102 residue peptide are reported. The peptide contains four sequence-specific DNA binding domains of 434 Cro protein. These four domains were linked covalently to a symmetrical carboxyterminal crosslinker that contains four arms each ending with an aliphatic aminogroup. From CD studies we have found that in aqueous buffer in the presence of 20% trifluoroethanol the peptide residues assume alpha helical, beta-sheet and random coiled conformations with an alpha helical content of about 16% at room temperature. The alpha helicity is increased up to 40% in the presence of 40% trifluoroethanol. Upon complex formation between the peptide and DNA a change in the peptide conformation takes place which is consistent with an alpha-beta transition in the DNA binding, helix-turn-helix motif of 434 Cro repressor. Evidently residues present in helices alpha(2) and alpha(3) form a beta hairpin which is inserted in the minor DNA groove. The latter inference is supported by our observations that the peptide can displace minor groove binding antibiotic distamycin A from a complex with poly(dA).poly(dT). As revealed from DNase protection studies the peptide exhibits preferences for binding to operator and pseudooperator sites recognized by 434 Cro repressor. It binds strongly to operator sites OR1, OR2 and OR3 and exhibits a greater affinity for pseudooperator site Op1. From analysis of nucleotide sequences in the strong affinity binding sites for the peptide on DNA a conclusion is drawn that it binds to pseudosymmetrical nucleotide sequences 5'-ACAA(W)nCTGT-3', where W is an arbitrary nucleotide. n is equal to six or seven. In the strongest affinity binding site for the peptide on DNA (Op1) motif 5'-ACAA-3' is replaced by sequence 5'-ACCA-3'. A difference in binding specificity shown by the peptide and 434 Cro protein could be attributed to a flexibility of the connecting chains between DNA-binding domains in the peptide molecule as well as to a replacement of Thr - Ala in the alpha 2 helix. Removal of two residues from the N-terminal end of helix alpha 2 in each of the four DNA binding domains of 434 Cro present in the peptide leads to a loss of binding specificity, although the modified peptide binds to DNA unspecifically.


Assuntos
Proteínas de Ligação a DNA/síntese química , DNA/metabolismo , Peptídeos/síntese química , Proteínas Repressoras , Fatores de Transcrição , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Distamicinas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/genética , Peptídeos/metabolismo , Polidesoxirribonucleotídeos/metabolismo , Conformação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Virais , Proteínas Virais Reguladoras e Acessórias
6.
Mol Biol (Mosk) ; 22(5): 1315-34, 1988.
Artigo em Russo | MEDLINE | ID: mdl-2851717

RESUMO

In the present communication, design, synthesis and DNA binding activities of the following two peptides are reported: Dns-Gly-Ala-Gln-Lys-Leu-Ala-Cly-Lys-Val-Gly-Thr-Lys-Val-Lys-Val-Gl y-Thr-Lys-Thr - Val-OH (I) and [(H-Ala-Lys-Leu-Ala-Thr-Lys-Ala-Gly-Val-Lys-Gln-Gln-Ser-Ile-Gln-Leu-Ile- Thr- Ala-Aca-Lys-Aca)2Lys-Aca]2Lys-Val-OH (II), where Aca = NH(CH2)5CO--; Dns is a residue of 5-dimethylaminonaphtalene-1-sulfonic acid. Peptide I contains a large fraction (ca.30%) of valyl and threonyl residues, which possess a high potential for beta structure formation. Peptide II contains four repeats of the amino acid sequence present in the presumed DNA binding helix-turn-helix unit of 434 Cro repressor. These four domains are linked in such a way that two domains can interact with two halves a 14 base pair long operator site on DNA. From CD studies we have found that peptide I is in a random coil conformation in the aqueous solution in the presence of 20% trifluoroethanol. By contrast, amino acid residues of peptide II assume alpha helical, beta and random coiled conformations under the same conditions. A change in the secondary structure of the two peptides upon binding to DNA is observed. The difference CD spectra obtained by subtracting the spectra of free DNA from the spectra of peptide I--DNA complexes gives rise to a beta-like pattern. The difference CD spectra obtained for complexes of peptide II with various natural and synthetic DNAs suggest that alpha-beta-transition takes place in the presumed helix-turn-helix repeat units of peptide II upon binding to DNA. Peptide I binds more strongly to poly(dG).poly(dC) than to poly(dA).poly(dT) and poly[d(GC)].poly[d(GC)]. The binding takes place in the minor DNA groove because minor groove binding antibiotic sibiromycin can displace peptide I from a complex with poly(dG).poly(dC). Analysis of footprinting diagramms shows that peptide I specifically protects phosphodiester bonds within operator sites OR1 and OR2 of phage lambda from nuclease cleavage. By contrast, peptide II does not react specifically with operators OR1, OR2 and OR3 of phage 434 although it forms very tight complexes with DNA which are stable in the presence of 1M NH4F.


Assuntos
Proteínas de Ligação a DNA/síntese química , DNA/metabolismo , Peptídeos/síntese química , Animais , Sequência de Bases , Dicroísmo Circular , Enzimas de Restrição do DNA , Proteínas de Ligação a DNA/metabolismo , Desoxirribonuclease I , Conformação de Ácido Nucleico , Peptídeos/metabolismo , Polidesoxirribonucleotídeos/metabolismo
7.
Mol Biol (Mosk) ; 21(6): 1534-50, 1987.
Artigo em Russo | MEDLINE | ID: mdl-3447046

RESUMO

Binding of synthetic pentapeptide Val-Thr-Thr-Val-Val-N2H2Dns (where Dns is a residue of 5-dimethylamino naphthyl-1-sulfonic acid) is studied by circular dichroism, electron microscopy and fluorescence methods. It is found that this peptide can self-associate in aqueous solution as revealed from the concentration-dependent changes in the UV absorbance and fluorescence spectra. At high peptide concentration (3.10(-4) M) massive peptide aggregates are formed in solution and can be visualized by electron microscopy. It is shown that pentapeptide binds to DNA predominantly in a self-associated form and exhibits preferences for certain nucleotide sequences. It binds more strongly to poly(dG).poly(dC) and poly[d(A-C)].poly[d(G-T)] than to poly(dA).poly(dT). The complex with poly(dA).poly(dT) dissociates in the presence of 0.05 M NaCl, whereas the complex with poly(dG).poly(dC) is stable even in the presence of 0.2 M NaCl. The binding is a cooperative process which is accompanied by compaction of DNA at peptide/DNA base pair ratios greater than 2. At the initial stage of the compaction process the coalescence of DNA segments covered by bound peptide molecules results in the formation of DNA loops stabilized by interaction between bound peptide molecules. Increasing peptide/DNA ratio leads to the formation of rod-like particles as revealed from electron microscopy studies. Further increase in the peptide concentration leads to folding of fibrillar macromolecular complexes into globula each containing a single DNA molecule.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Oligopeptídeos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Ligação Competitiva , Dicroísmo Circular , Distamicinas/metabolismo , Corantes Fluorescentes , Cinética , Microscopia Eletrônica , Oligopeptídeos/síntese química , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...