Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(1): 122-131, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36574643

RESUMO

The photon energy-dependent selectivity of photocatalytic CO2-to-CO conversion by CsPbBr3 nanocrystals (NCs) and CsPbBr3/g-C3N4 nanoheterostructures (NHSs) was demonstrated for the first time. The surficial capping ligands of CsPbBr3 NCs would adsorb CO2, resulting in the carboxyl intermediate to process the CO2-to-CO conversion via carbene pathways. The type-II energy band structure at the heterojunction of CsPbBr3/g-C3N4 NHSs would separate the charge carriers, promoting the efficiency in photocatalytic CO2-to-CO conversion. The electron consumption rate of CO2-to-CO conversion for CsPbBr3/g-C3N4 NHSs was found to intensively depend on the rate constant of interfacial hole transfer from CsPbBr3 to g-C3N4. An in situ transient absorption spectroscopy investigation revealed that the half-life time of photoexcited electrons in optimized CsPbBr3/g-C3N4 NHS was extended two times more than that in the CsPbBr3 NCs, resulting in the higher probability of charge carriers to carry out the CO2-to-CO conversion. The current work presents important and novel insights of semiconductor NHSs for solar energy-driven CO2 conversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...