Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 252(2): 97-111, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20888850

RESUMO

The InnoMed PredTox consortium was formed to evaluate whether conventional preclinical safety assessment can be significantly enhanced by incorporation of molecular profiling ("omics") technologies. In short-term toxicological studies in rats, transcriptomics, proteomics and metabolomics data were collected and analyzed in relation to routine clinical chemistry and histopathology. Four of the sixteen hepato- and/or nephrotoxicants given to rats for 1, 3, or 14days at two dose levels induced similar histopathological effects. These were characterized by bile duct necrosis and hyperplasia and/or increased bilirubin and cholestasis, in addition to hepatocyte necrosis and regeneration, hepatocyte hypertrophy, and hepatic inflammation. Combined analysis of liver transcriptomics data from these studies revealed common gene expression changes which allowed the development of a potential sequence of events on a mechanistic level in accordance with classical endpoint observations. This included genes implicated in early stress responses, regenerative processes, inflammation with inflammatory cell immigration, fibrotic processes, and cholestasis encompassing deregulation of certain membrane transporters. Furthermore, a preliminary classification analysis using transcriptomics data suggested that prediction of cholestasis may be possible based on gene expression changes seen at earlier time-points. Targeted bile acid analysis, based on LC-MS metabonomics data demonstrating increased levels of conjugated or unconjugated bile acids in response to individual compounds, did not provide earlier detection of toxicity as compared to conventional parameters, but may allow distinction of different types of hepatobiliary toxicity. Overall, liver transcriptomics data delivered mechanistic and molecular details in addition to the classical endpoint observations which were further enhanced by targeted bile acid analysis using LC/MS metabonomics.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/genética , Colestase Intra-Hepática/genética , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/genética , Perfilação da Expressão Gênica/métodos , Metabolômica/métodos , Proteômica/métodos , Animais , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Colestase Intra-Hepática/induzido quimicamente , Colestase Intra-Hepática/diagnóstico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/induzido quimicamente , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Masculino , Ratos , Ratos Wistar
2.
Mol Nutr Food Res ; 54(11): 1556-67, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20540150

RESUMO

SCOPE: Furan, a food contaminant formed during heat processing, induces hepatocellular tumors in rodents and high incidences of cholangiocarcinomas in rats even at the lowest dose (2 mg/kg b.w.) administered. Initial estimates suggested that human intake of furan may be as high as 3.5 µg/kg b.w./day, indicating a relatively narrow margin of exposure. The aim of this study was to establish dose-response data for cytotoxicity, regenerative cell proliferation and secondary oxidative DNA damage in livers of male F344 rats treated with furan at doses ≤2 mg/kg b.w. for 28 days. METHODS AND RESULTS: No significant signs of hepatotoxicity other than a mild, dose-dependent increase in serum cholesterol and unconjugated bile acids, and no evidence of oxidative DNA damage were seen. Histopathological alterations and proliferative changes were restricted to subcapsular areas of the left and caudate liver lobes. CONCLUSION: Although statistically significant effects were only seen at the 2 mg/kg b.w. dose during the course of our study, a ∼two and ∼threefold increase in 5-bromo-2'-deoxyuridine labeling index was observed at 0.1 and 0.5 mg/kg b.w., respectively, suggesting that chronic exposure to doses even below 2 mg/kg b.w. may cause proliferative changes in rat liver and highlighting the need to assess furan carcinogenicity at lower doses.


Assuntos
Carcinógenos Ambientais/toxicidade , Proliferação de Células , Furanos/administração & dosagem , Furanos/toxicidade , Fígado/fisiopatologia , Administração Oral , Animais , Apoptose , Ácidos e Sais Biliares/análise , Ácidos e Sais Biliares/sangue , Testes de Carcinogenicidade , Carcinógenos Ambientais/metabolismo , Dano ao DNA , Masculino , Metabolômica , Tamanho do Órgão , Ratos , Ratos Endogâmicos F344
3.
Toxicol Sci ; 109(2): 336-49, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19349640

RESUMO

Although early detection of toxicant induced kidney injury during drug development and chemical safety testing is still limited by the lack of sensitive and reliable biomarkers of nephrotoxicity, omics technologies have brought enormous opportunities for improved detection of toxicity and biomarker discovery. Thus, transcription profiling has led to the identification of several candidate kidney biomarkers such as kidney injury molecule (Kim-1), clusterin, lipocalin-2, and tissue inhibitor of metalloproteinase 1 (Timp-1), and metabonomic analysis of urine is increasingly used to indicate biochemical perturbations due to renal toxicity. This study was designed to assess the value of a combined (1)H-NMR and gas chromatography-mass spectrometry (GC-MS) metabonomics approach and a set of novel urinary protein markers for early detection of nephrotoxicity following treatment of male Wistar rats with gentamicin (60 and 120 mg/kg bw, s.c.) for 7 days. Time- and dose-dependent separation of gentamicin-treated animals from controls was observed by principal component analysis of (1)H-NMR and GC-MS data. The major metabolic alterations responsible for group separation were linked to the gut microflora, thus related to the pharmacology of the drug, and increased glucose in urine of gentamicin-treated animals, consistent with damage to the S(1) and S(2) proximal tubules, the primary sites for glucose reabsorption. Altered excretion of urinary protein biomarkers Kim-1 and lipocalin-2, but not Timp-1 and clusterin, was detected before marked changes in clinical chemistry parameters were evident. The early increase in urine, which correlated with enhanced gene and protein expression at the site of injury, provides further support for lipocalin-2 and Kim-1 as sensitive, noninvasive biomarkers of nephrotoxicity.


Assuntos
Antibacterianos/toxicidade , Biomarcadores/urina , Gentamicinas/toxicidade , Rim/metabolismo , Análise de Variância , Animais , Antibacterianos/administração & dosagem , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Clusterina/genética , Clusterina/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Expressão Gênica/efeitos dos fármacos , Gentamicinas/administração & dosagem , Imuno-Histoquímica , Rim/patologia , Lipocalinas/genética , Lipocalinas/metabolismo , Masculino , Metabolômica , Necrose/metabolismo , Ressonância Magnética Nuclear Biomolecular , Análise de Componente Principal , Curva ROC , Ratos , Ratos Wistar , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...