Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 147: 107316, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583246

RESUMO

Ras GTPases and other CaaX proteins undergo multiple post-translational modifications at their carboxyl-terminus. These events initiate with prenylation of a cysteine and are followed by endoproteolytic removal of the 'aaX' tripeptide and carboxylmethylation. Some CaaX proteins are only subject to prenylation, however, due to the presence of an uncleavable sequence. In this study, uncleavable sequences were used to stage Ras isoforms in a farnesylated and uncleaved state to address the impact of CaaX proteolysis on protein localization and function. This targeted strategy is more specific than those that chemically inhibit the Rce1 CaaX protease or delete the RCE1 gene because global abrogation of CaaX proteolysis impacts the entire CaaX protein proteome and effects cannot be attributed to any specific CaaX protein of the many concurrently affected. With this targeted strategy, clear mislocalization and reduced activity of farnesylated and uncleaved Ras isoforms was observed. In addition, new peptidomimetics based on cleavable Ras CaaX sequences and the uncleavable CAHQ sequence were synthesized and tested as Rce1 inhibitors using in vitro and cell-based assays. Consistently, these non-hydrolyzable peptidomimetic Rce1 inhibitors recapitulate Ras mislocalization effects when modeled on cleavable but not uncleavable CaaX sequences. These findings indicate that a prenylated and uncleavable CaaX sequence, which can be easily applied to a wide range of mammalian CaaX proteins, can be used to probe the specific impact of CaaX proteolysis on CaaX protein properties under conditions of an otherwise normally processed CaaX protein proteome.


Assuntos
Proteínas ras , Humanos , Proteínas ras/metabolismo , Proteínas ras/antagonistas & inibidores , Proteínas ras/genética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Proteólise/efeitos dos fármacos , Estrutura Molecular , Peptidomiméticos/farmacologia , Peptidomiméticos/química , Peptidomiméticos/síntese química , Endopeptidases
2.
J Chem Inf Model ; 63(22): 7159-7170, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37939203

RESUMO

Membrane proteins are difficult to isolate and purify due to their dependence on the surrounding lipid membrane for structural stability. Detergents are often used to solubilize these proteins, with this approach requiring a careful balance between protein solubilization and denaturation. Determining which detergent is most appropriate for a given protein has largely been done empirically through screening, which requires large amounts of membrane protein and associated resources. Here, we describe an alternative to conventional detergent screening using a computational modeling approach to identify the most likely candidate detergents for solubilizing a protein of interest. We demonstrate our approach using ghrelin O-acyltransferase (GOAT), a member of the membrane-bound O-acyltransferase family of integral membrane enzymes that has not been solubilized or purified in active form. A computationally derived GOAT structural model provides the only structural information required for this approach. Using computational analysis of detergent ability to penetrate phospholipid bilayers and stabilize the GOAT structure, a panel of common detergents were rank-ordered for their proposed ability to solubilize GOAT. The simulations were performed at all-atom resolution for a combined simulation time of 24 µs. Independently, we biologically screened these detergents for their solubilization of fluorescently tagged GOAT constructs. We found computational prediction of protein structural stabilization was the better predictor of detergent solubilization ability, but neither approach was effective for predicting detergents that would support GOAT enzymatic function. The current rapid expansion of membrane protein computational models lacking experimental structural information and our computational detergent screening approach can greatly improve the efficiency of membrane protein detergent solubilization, supporting downstream functional and structural studies.


Assuntos
Detergentes , Proteínas de Membrana , Animais , Detergentes/química , Detergentes/metabolismo , Proteínas de Membrana/química , Fosfolipídeos , Aciltransferases , Cabras/metabolismo , Solubilidade
3.
Org Lett ; 25(36): 6767-6772, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37669435

RESUMO

Prenylated proteins contain C15 or C20 isoprenoids linked to cysteine residues positioned near their C-termini. Here we describe the preparation of isoprenoid diphosphate analogues incorporating diazirine groups that can be used to probe interactions between prenylated proteins and other proteins that interact with them. Studies using synthetic peptides and whole proteins demonstrate that these diazirine analogues are efficient substrates for prenyltransferases. Photo-cross-linking experiments using peptides incorporating the diazirine-functionalized isoprenoids selectively cross-link to several different proteins. These new isoprenoid analogues should be broadly useful in the studies of protein prenylation.


Assuntos
Diazometano , Difosfatos , Peptídeos , Cisteína , Terpenos
4.
ACS Chem Biol ; 18(8): 1880-1890, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37494676

RESUMO

Ghrelin O-acyltransferase (GOAT) plays a central role in the maturation and activation of the peptide hormone ghrelin, which performs a wide range of endocrinological signaling roles. Using a tight-binding fluorescent ghrelin-derived peptide designed for high selectivity for GOAT over the ghrelin receptor GHSR, we demonstrate that GOAT interacts with extracellular ghrelin and facilitates ligand cell internalization in both transfected cells and prostate cancer cells endogenously expressing GOAT. Coupled with enzyme mutagenesis, ligand uptake studies support the interaction of the putative histidine general base within GOAT with the ghrelin peptide acylation site. Our work provides a new understanding of GOAT's catalytic mechanism, establishes that GOAT can interact with ghrelin and other peptides located outside the cell, and raises the possibility that other peptide hormones may exhibit similar complexity in their intercellular and organismal-level signaling pathways.


Assuntos
Grelina , Via Secretória , Animais , Masculino , Aciltransferases/metabolismo , Corantes , Grelina/metabolismo , Ligantes
5.
J Biol Chem ; 294(39): 14166-14174, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31413115

RESUMO

Integral membrane proteins represent a large and diverse portion of the proteome and are often recalcitrant to purification, impeding studies essential for understanding protein structure and function. By combining co-evolutionary constraints and computational modeling with biochemical validation through site-directed mutagenesis and enzyme activity assays, we demonstrate here a synergistic approach to structurally model purification-resistant topologically complex integral membrane proteins. We report the first structural model of a eukaryotic membrane-bound O-acyltransferase (MBOAT), ghrelin O-acyltransferase (GOAT), which modifies the metabolism-regulating hormone ghrelin. Our structure, generated in the absence of any experimental structural data, revealed an unanticipated strategy for transmembrane protein acylation with catalysis occurring in an internal channel connecting the endoplasmic reticulum lumen and cytoplasm. This finding validated the power of our approach to generate predictive structural models for other experimentally challenging integral membrane proteins. Our results illuminate novel aspects of membrane protein function and represent key steps for advancing structure-guided inhibitor design to target therapeutically important but experimentally intractable membrane proteins.


Assuntos
Aciltransferases/química , Domínio Catalítico , Acetilação , Aciltransferases/metabolismo , Animais , Grelina/química , Grelina/metabolismo , Humanos , Células Sf9 , Spodoptera
6.
Methods Mol Biol ; 2009: 227-241, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31152408

RESUMO

Ghrelin O-acyltransferase (GOAT) is an enzyme responsible for octanoylating and activating ghrelin, a peptide hormone that plays a key role in energy regulation and hunger signaling. Due to its nature as an integral membrane protein, GOAT has yet to be purified in active form which has complicated biochemical and structural studies of GOAT-catalyzed ghrelin acylation. In this chapter, we describe protocols for efficient expression and enrichment of GOAT in insect cell-derived microsomal fraction, HPLC-based assays for GOAT acylation activity employing fluorescently labeled peptides, and assessment of inhibitor potency against GOAT.


Assuntos
Aciltransferases , Inibidores Enzimáticos/química , Expressão Gênica , Grelina/química , Peptídeos/química , Acilação , Aciltransferases/antagonistas & inibidores , Aciltransferases/biossíntese , Aciltransferases/química , Aciltransferases/isolamento & purificação , Animais , Grelina/metabolismo , Humanos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Células Sf9 , Spodoptera
7.
Biochemistry ; 56(7): 919-931, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28134508

RESUMO

The peptide hormone ghrelin plays a key role in regulating hunger and energy balance within the body. Ghrelin signaling presents a promising and unexploited target for development of small molecule therapeutics for treatment of obesity, diabetes, and other health conditions. Inhibition of ghrelin O-acyltransferase (GOAT), which catalyzes an essential octanoylation step in ghrelin maturation, offers a potential avenue for controlling ghrelin signaling. Through screening a small molecule library, we have identified a class of synthetic triterpenoids that efficiently inhibit ghrelin acylation by the human isoform of GOAT (hGOAT). These compounds function as covalent reversible inhibitors of hGOAT, providing the first evidence of the involvement of a nucleophilic cysteine residue in substrate acylation by a MBOAT family acyltransferase. Surprisingly, the mouse form of GOAT does not exhibit susceptibility to cysteine-modifying electrophiles, revealing an important distinction in the activity and behavior between these closely related GOAT isoforms. This study establishes these compounds as potent small molecule inhibitors of ghrelin acylation and provides a foundation for the development of novel hGOAT inhibitors as therapeutics targeting diabetes and obesity.


Assuntos
Aciltransferases/antagonistas & inibidores , Aciltransferases/metabolismo , Inibidores Enzimáticos/farmacologia , Grelina/metabolismo , Triterpenos/farmacologia , Acilação , Aciltransferases/química , Animais , Cisteína/química , Cisteína/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Grelina/química , Humanos , Proteínas de Membrana , Camundongos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Triterpenos/química
8.
Endocrinology ; 157(11): 4330-4338, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27623288

RESUMO

Ghrelin is a peptide hormone involved in multiple physiological processes related to energy homeostasis. This hormone features a unique posttranslational serine octanoylation modification catalyzed by the enzyme ghrelin O-acyltransferase, with serine octanoylation essential for ghrelin to bind and activate its cognate receptor. Ghrelin deacylation rapidly occurs in circulation, with both ghrelin and desacyl ghrelin playing important roles in biological signaling. Understanding the regulation and physiological impact of ghrelin signaling requires the ability to rapidly protect ghrelin from deacylation in biological samples such as blood serum or cell lysates to preserve the relative concentrations of ghrelin and desacyl ghrelin. In in vitro ghrelin O-acyltransferase activity assays using insect microsomal protein fractions and mammalian cell lysate and blood serum, we demonstrate that alkyl fluorophosphonate treatment provides rapid, complete, and long-lasting protection of ghrelin acylation against serine ester hydrolysis without interference in enzyme assay or ELISA analysis. Our results support alkyl fluorophosphonate treatment as a general tool for stabilizing ghrelin and improving measurement of ghrelin and desacyl ghrelin concentrations in biochemical and clinical investigations and suggest current estimates for active ghrelin concentration and the ghrelin to desacyl ghrelin ratio in circulation may underestimate in vivo conditions.


Assuntos
Fluoretos/farmacologia , Grelina/metabolismo , Fosfatos/farmacologia , Acilação/efeitos dos fármacos , Aciltransferases/metabolismo , Animais , Grelina/sangue , Grelina/química , Células HEK293 , Humanos , Masculino , Estabilidade Proteica/efeitos dos fármacos , Ratos , Ratos Wistar , Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...