Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 13(46): 13872-13878, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36544743

RESUMO

Radical anions appear as intermediates in a variety of organic reductions and have recently garnered interest for their role as mediators for electron-driven catalysis as well as for organic electron conductor materials. Due to their unstable nature, the isolation of such organic radical anions is usually only possible by using extended aromatic systems, whereas non-aromatic unsaturated hydrocarbons have so far only been observed in situ. We herein report the first isolation, structure and spectroscopic characterization of a simple aryl substituted alkene radical anion, namely that of stilbene (1,2-diphenyl ethylene), achieved by encapsulation between two [K{18c6}] cations. The formation of the radical anion is accompanied by Z → E isomerization of the involved double bond, also on a catalytic scale. Employing the linear iron(i) complex [Fe(NR2)2]- as a reductant and coordination site also allows for this transformation, via formation of an iron(ii) bound radical anion. The use of the iron complex now also allows for Z → E isomerization of electron richer, simple alkenes bearing either mixed alkyl/aryl or even bis(alkyl) substitution.

2.
Chem Commun (Camb) ; 58(70): 9786-9789, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35971739

RESUMO

The isolation of the first diarsene radical anion by reduction of a neutral diarsene is presented. Comprehensive characterisation in conjunction with DFT calculations reveals unpaired spin density residing in the antibonding π*-orbital with involvement of the terphenyl ligands. First reactivity studies reveal no pronounced radical, but rather reducing properties.

3.
Chemistry ; 27(67): 16760-16767, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34569676

RESUMO

Carbonyl and iminyl based radical anions are reactive intermediates in a variety of transformations in organic synthesis. Herein, the isolation of ketyl, and more importantly unprecedented ketiminyl and aldiminyl radical anions coordinated to cobalt and iron complexes is presented. Insights into the electronic structure of these unusual metal bound radical anions is provided by X-Ray diffraction analysis, NMR, IR, UV/Vis and Mössbauer spectroscopy, solid and solution state magnetometry, as well as a by a detailed computational analysis. The metal bound radical anions are very reactive and facilitate the activation of intra- and intermolecular C-H bonds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...