Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 10(17): 8187-8195, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29676427

RESUMO

An outstanding current carrying performance (namely critical current density, Jc) over a broad temperature range of 10-77 K for magnetic fields up to 12 T is reported for films of YBa2Cu3O7-x with Ba2Y(Nb,Ta)O6 inclusion pinning centres (YBCO-BYNTO) and thicknesses in the range of 220-500 nm. Jc values of 10 MA cm-2 were measured at 30 K - 5 T and 10 K - 9 T with a corresponding maximum of the pinning force density at 10 K close to 1 TN m-3. The system is very flexible regarding properties and microstructure tuning, and the growth window for achieving a particular microstructure is wide, which is very important for industrial processing. Hence, the dependence of Jc on the magnetic field angle was readily controlled by fine tuning the pinning microstructure. Transmission electron microscopy (TEM) analysis highlighted that higher growth rates induce more splayed and denser BYNTO nanocolumns with a matching field as high as 5.2 T. Correspondingly, a strong peak at the B||c-axis is noticed when the density of vortices is lower than the nanocolumn density. YBCO-BYNTO is a very robust and reproducible composite system for high-current coated conductors over an extended range of magnetic fields and temperatures.

4.
Nature ; 394(6693): 554-6, 1998 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-9707116

RESUMO

The signature of condensed molecular oxygen has been reported in recent optical-reflectance measurements of the jovian moon Ganymede, and a tenuous oxygen atmosphere has been observed on Europa. The surfaces of these moons contain large amounts of water ice, and it is thought that O2 is formed by the sputtering of ice by energetic particles from the jovian magnetosphere. Understanding how O2 might be formed from low-temperature ice is crucial for theoretical and experimental simulations of the surfaces and atmospheres of icy bodies in the Solar System. Here we report laboratory measurements of the threshold energy, cross-section and temperature dependence of O2 production by electronic excitation of ice in vacuum, following electron-beam irradiation. Molecular oxygen is formed by direct excitation and dissociation of a stable precursor molecule, rather than (as has been previously thought) by diffusion and chemical recombination of precursor fragments. The large cross-section for O2 production suggests that electronic excitation plays an important part in the formation of O2 on Ganymede and Europa.


Assuntos
Meio Ambiente Extraterreno , Júpiter , Oxigênio/análise , Temperatura Baixa , Eletroquímica , Gelo , Vácuo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...