Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 41(46): 14157-69, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23034733

RESUMO

The structures and properties of the homoleptic copper(I) complexes [Cu(1)(2)][PF(6)] and [Cu(2)(2)][PF(6)] (1 = 6,6'-dimethyl-2,2'-bipyridine, 2 = 6,6'-bis{2-[4-(N,N'-diphenylamino)phenyl]ethenyl}-2,2'-bipyridine) are compared, and a strategy of ligand exchange in solution has been used to prepare eight TiO(2) surface-bound heteroleptic complexes incorporating ligands with bpy metal-binding domains and carboxylate or phosphonate anchoring groups. The presence of the extended π-system in 2 significantly improves dye performance, and the most efficient sensitizers are those with phosphonate or phenyl-4-carboxylate anchoring units; a combination of [Cu(2)(2)](+) with the phosphonate anchoring ligand gives a very promising performance (η = 2.35% compared to 7.29% for standard dye N719 under the same conditions). The high-energy bands in the electronic absorption spectrum of [Cu(2)(2)](+) which arise from ligand-based transitions dominate the spectrum, whereas that of [Cu(1)(2)](+) exhibits both MLCT and ligand π* ← π bands. Both [Cu(1)(2)][PF(6)] and [Cu(2)(2)][PF(6)] are redox active; while the former exhibits both copper-centred and ligand-based processes, [Cu(2)(2)][PF(6)] shows only ligand-based reductions. Results of TD-DFT calculations support these experimental data. They predict an electronic absorption spectrum for [Cu(1)(2)](+) with an MLCT band and high-energy ligand-based transitions, and a spectrum for [Cu(2)(2)](+) comprising transitions involving mainly contributions from orbitals with ligand 2 character. We have assessed the effects of the atomic orbital basis set on the calculated absorption spectrum of [Cu(1)(2)](+) and show that a realistic spectrum is obtained by using a 6-311++G** basis set on all atoms, or 6-311++G** on copper and 6-31G* basis set on all other atoms; a smaller basis set on copper leads to unsatisfactory results. Electronic absorption spectra of six heteroleptic complexes have been predicted using TD-DFT calculations, and the transitions making up the dominant bands analysed in terms of the character of the HOMO-LUMO manifold. The calculational data reveal dominant phosphonate ligand character in the LUMO for the dye found to function most efficiently in practice, and also reveal that the orbital character in the HOMOs of the two most efficient dyes is dominated by the non-anchoring ligand 2, suggesting that ligand 2 enhances the performance of the sensitizer by minimizing back-migration of an electron from the semiconductor to the dye.

2.
Dalton Trans ; (42): 4797-810, 2007 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-17955132

RESUMO

Two new polytopic ligands L1 and L2 have been synthesized. They consist of a central tren unit to which three 1,4,7,10-tetraazacyclododecane rings are attached via an ethylene and a trimethylene bridge, respectively. The complexation properties of L1 and L2 towards Cu(2+) and Ni(2+) were studied by potentiometric pH titration, UV-Vis, EPR spectroscopy and kinetic techniques. As a comparison, the Cu(2+) and Ni(2+) complexes with L3 (1-(N-methyl-2-aminoethyl-1,4,7,10-tetraazacyclododecane)) were also investigated. The crystal structures of [CuL3H(H(2)O)](ClO(4))(3) and [NiL3Cl](ClO(4)) were solved and show that the side chain in its protonated form is not involved in coordination, whereas deprotonated it binds to the metal ion. The thermodynamically stable 3:1 complexes of L1 or L2 have a metal ion in the three macrocyclic units. However, when three equivalents of Cu(2+) are added to L1 or L2 the metal ion first binds to the tren unit and only then to the macrocycles. The kinetics of the different steps of complexation have been studied and a mechanism is proposed.

3.
Dalton Trans ; (18): 3079-82, 2005 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-16127503

RESUMO

The kinetics of the on/off reaction of the amino group in the side chain of tetraazamacrocyclic Cu2+, Ni2+ and Co2+ complexes has been measured. The rate law k(obs)=k(0)+k(H)[H+]+k(OH)/[H+], the sum of the forward and reverse reaction, gives rise to u-shaped pH dependences from which the three rate constants can be determined. k(H) describes the proton assisted dissociation of the amino group bound to the metal ion and is roughly correlated to the equilibrium constant of the reaction. k(OH) is determined by the protonation constant of the free amino group and the rate constant describing the binding of the amino group to the metal ion. k(0) is composed of the rate constant for the opening of the chelate ring without proton assistance and the rate for the reactivity of the ammonium group in the formation of the chelate ring. Our results show that the rates of the opening and closing of the chelate ring are very little dependent on the nature of the metal ion.


Assuntos
Compostos Aza/química , Cobalto/química , Cobre/química , Compostos Macrocíclicos/química , Níquel/química , Compostos Organometálicos/química , Concentração de Íons de Hidrogênio , Cinética , Estrutura Molecular , Compostos Organometálicos/síntese química , Sensibilidade e Especificidade , Espectrofotometria
4.
Dalton Trans ; (12): 2138-46, 2005 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-15957056

RESUMO

The stepwise complexation kinetics of Cu2+ with three tetratopic ligands L1, L2 and L3, tren-centred macrocycles with different bridges connecting the 14-membered macrocycles with the tren unit, have been measured by stopped-flow photodiode array techniques at 25 degrees C, I= 0.5 M (KNO3), and pH = 4.96. The reaction between the first Cu2+ and the ligand consists of several steps. In a rapid reaction Cu2+ first binds to the flexible and more reactive tren-unit. In this intermediate a translocation from the tren unit to the macrocyclic ring, which forms the thermodynamic more stable complex, takes place. This species can react further with a second Cu2+ to give a heterotopic dinuclear species with one Cu2+ bound by the tren-unit and the other coordinated by the macrocycle. A further translocation occurs to give the homoditopic species with two Cu2+ in the macrocycles. Finally a slow rearrangement of the dinuclear complex gives the final species. The rates of the translocation are dependent on the length and rigidity of the bridge, whereas the complexation rates with the tren unit are little affected by it. VIS spectra of the species obtained by fitting the kinetic results, EPR-spectra taken during the reaction, and ES mass spectra of the products confirm the proposed mechanism. The addition of a second, third and fourth equivalent of Cu2+ proceeds in an analogous way, but is complicated by the fact that we start and end with a mixture of species. These steps were evaluated in a qualitative way only.

5.
Dalton Trans ; (6): 1136-40, 2005 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-15739018

RESUMO

The kinetics of the formation and dissociation of the Cu(2+) and Ni(2+) complexes with a series of N(2)S(2) macrocycles, in which the ring size and the geometry of the arrangement of the donor groups have been varied, have been measured at 25 [degree]C and I= 0.5 (KNO(3)). Both the deprotonated (L) and the monoprotonated (LH(+)) form of the ligands are reactive species in the formation step. In their deprotonated form, first bond formation, in some cases supported by an ICB effect, is rate determining, independently of the ring size. In the monoprotonated form, we find slower rates, due to the charge repulsion and/or conformation changes induced by hydrogen bonds. In contrast the mechanism of the dissociation is very dependent on the ring size. The complexes with the smaller rings react as flexible open-chain ligands directly with H(+). In contrast, the complexes with the larger rings react in a similar way as rigid ligands: first the metal amine bond slowly dissociates so that the free electron pair of the amine can take the "out conformation" and then it is protonated. The 14-membered macrocycle L(3) forms complexes in which the metal ions are ideally coordinated so that their dissociation becomes extremely slow.


Assuntos
Cobre/química , Diamida/química , Compostos Macrocíclicos/química , Níquel/química , Compostos de Organotecnécio/síntese química , Compostos de Sulfidrila/química , Diamida/análogos & derivados , Concentração de Íons de Hidrogênio , Cinética , Ligantes , Estrutura Molecular , Compostos de Organotecnécio/química
6.
Dalton Trans ; (1): 30-6, 2005 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-15605144

RESUMO

The metal promoted hydrolysis of nitrile groups in the side chains of tetraazamacrocyclic Cu2+ complexes has been studied by stopped-flow techniques. It is shown that the reaction proceeds by an intramolecular attack of an axially coordinated OH- onto the nitrile group to give the corresponding amide. In alkaline solution the amide then deprotonates and binds to the axial position of the Cu2+ thus preventing further coordination of an OH-. This explains mechanistically that in the Cu2+ complexes of macrocycles carrying two nitrile functions only one is selectively hydrolysed. The nitrile hydrolysis has also been used on a preparative scale to synthesize tetraazamacrocycles with two different side chains. X-Ray diffractions of several products are presented to confirm the structures and the results from the kinetics and equilibria measurements.


Assuntos
Cobre/metabolismo , Compostos Heterocíclicos/metabolismo , Nitrilas/metabolismo , Compostos Aza/síntese química , Compostos Aza/química , Compostos Aza/metabolismo , Cobre/química , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Concentração de Íons de Hidrogênio , Hidrólise , Hidróxidos , Cinética , Conformação Molecular , Estrutura Molecular , Nitrilas/química , Relação Estrutura-Atividade , Difração de Raios X
7.
Dalton Trans ; (14): 2115-24, 2004 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-15249947

RESUMO

Two novel symmetric polytopic ligands L(1) and L(2) have been synthesized. They are composed of three 1,4,8,11-tetraazacyclotetradecane macrocycles which are connected to a central tren moiety via an ethylene and a trimethylene bridge, respectively. The complexation potential and the speciation diagrams of L(1) and L(2) towards Cu(2+) and Ni(2+) were determined by spectrophotometric and potentiometric titrations. Insight into the geometry of the Cu(2+) complexes is provided by UV-VIS and EPR spectroscopy. The simplified ligands L(3) and L(4) are utilized as references for an aminoethyl- and a tren-substituted tetraaza macrocycle to help assign the EPR spectra of the polytopic ligands L(1) and L(2). At a metal-to-ligand ratio of 3 : 1, the metal cations are preferentially bound to the tetraaza macrocycles of L(1) and L(2) in a square planar geometry. At high pH values, a nitrogen atom of the tren moiety in L(1) serves as an additional ligand in an axial position leading to a square pyramidal coordination around Cu(2+), whereas in L(2) no such geometry change is observed. At a metal-to-ligand ratio of 4 : 1, the additional metal cation resides in the central tren moiety of L(1) and L(2). However, in contrast to the typical trigonal bipyramidal geometry found in the [Cutren](2+) complex, the fourth Cu(2+) has a square pyramidal coordination caused by the interaction with the Cu(2+) cations in the macrocycles (as evidenced by EPR spectra). Since the sequence of metal complexation is such that the first three metal ions always bind to the three macrocycles of L(1) and L(2) and the fourth to the tren unit, it is possible to prepare heteronuclear complexes such as [Cu(3)NiL](8+) or [Ni(3)CuL](8+), which can be unambiguously identified by their spectral properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...