Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 131(2): 1689-700, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22352598

RESUMO

Experimental observations and theoretical studies show that nonlinear internal waves occur widely in shallow water and cause acoustic propagation effects including ducting and mode coupling. Horizontal ducting results when acoustic modes travel between internal wave fronts that form waveguide boundaries. For small grazing angles between a mode trajectory and a front, an interference pattern may arise that is a horizontal Lloyd mirror pattern. An analytic description for this feature is provided along with comparisons between results from the formulated model predicting a horizontal Lloyd mirror pattern and an adiabatic mode parabolic equation. Different waveguide models are considered, including boxcar and jump sound speed profiles where change in sound speed is assumed 12 m/s. Modifications to the model are made to include multiple and moving fronts. The focus of this analysis is on different front locations relative to the source as well as on the number of fronts and their curvatures and speeds. Curvature influences mode incidence angles and thereby changes the interference patterns. For sources oriented so that the front appears concave, the areas with interference patterns shrink as curvature increases, while convexly oriented fronts cause patterns to expand.

2.
J Acoust Soc Am ; 121(5 Pt1): EL218-22, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17550206

RESUMO

This paper summarizes evidence of a nonlinear frequency dependence of attenuation for compressional waves in shallow-water waveguides with sandy sediment bottoms. Sediment attenuation is found consistent with alpha(f) = alpha(f(o)) x (f/f(o))n, n approximately 1.8 +/- 0.2 at frequencies less than 1 kHz in agreement with the theoretical expectation, (n = 2), of Biot [J. Acoust. Soc. Am. 28(2), 168-178, 1956]. For frequencies less than 10 kHz, the sediment layers, within meters of the water-sediment interface, appear to play a role in the attenuation that strongly depends on the power law. The accurate calculation of sound transmission in a shallow-water waveguide requires the depth-dependent sound speed, density, and frequency-dependent attenuation.


Assuntos
Movimento (Física) , Dinâmica não Linear , Dióxido de Silício , Som , Água , Interpretação Estatística de Dados , Periodicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA