Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 135(6): 3305-15, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24907794

RESUMO

This contribution investigates the behavior of two important riverbed sediment classifiers, derived from multi-beam echo-sounder (MBES)-operating at 300 kHz-data, in very coarse sediment environments. These are the backscatter strength and the depth residuals. Four MBES data sets collected at different parts of rivers in the Netherlands are employed. From previous research the backscatter strength was found to increase for increasing mean grain sizes. Depth residuals, however, are often found to have lower values for coarser sediments. Investigation of the four data sets indicates that these statements are valid only for moderately coarse sediment such as sand. For very coarse sediments (e.g., coarse gravel) the backscatter strength is found to decrease and the depth residuals increase for increasing mean grain sizes. This is observed when the sediment mean grain size becomes significantly larger than the acoustic wavelength of the MBES (5 mm). Knowledge regarding this behavior is of high importance when using backscatter strength and depth residuals for sediment classification purposes as the reverse in behavior can induce ambiguity in the classification.

2.
J Acoust Soc Am ; 129(5): 2878-88, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21568391

RESUMO

Acoustic remote sensing techniques for mapping sediment properties are of interest due to their low costs and high coverage. Model-based approaches directly couple the acoustic signals to sediment properties. Despite the limited coverage of the single-beam echosounder (SBES), it is widely used. Having available model-based SBES classification tools, therefore, is important. Here, two model-based approaches of different complexity are compared to investigate their practical applicability. The first approach is based on matching the echo envelope. It maximally exploits the information available in the signal but requires complex modeling and optimization. To minimize computational costs, the efficient differential evolution method is used. The second approach reduces the information of the signal to energy only and directly relates this to the reflection coefficient to obtain quantitative information about the sediment parameters. The first approach provides information over a variety of sediment types. In addition to sediment mean grain size, it also provides estimates for the spectral strength and volume scattering parameter. The need to account for all three parameters is demonstrated, justifying computational expenses. In the second approach, the lack of information on these parameters and the limited SBES beamwidth are demonstrated to hamper the conversion of echo energy to reflection coefficient.


Assuntos
Acústica/instrumentação , Sedimentos Geológicos/classificação , Modelos Teóricos , Biologia Marinha/instrumentação , Matemática , Tamanho da Partícula , Som , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...