Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 24(6): 2328-51, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22751214

RESUMO

Transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the gene encoding the E1 subunit of the 2-oxoglutarate dehydrogenase complex in the antisense orientation and exhibiting substantial reductions in the activity of this enzyme exhibit a considerably reduced rate of respiration. They were, however, characterized by largely unaltered photosynthetic rates and fruit yields but restricted leaf, stem, and root growth. These lines displayed markedly altered metabolic profiles, including changes in tricarboxylic acid cycle intermediates and in the majority of the amino acids but unaltered pyridine nucleotide content both in leaves and during the progression of fruit ripening. Moreover, they displayed a generally accelerated development exhibiting early flowering, accelerated fruit ripening, and a markedly earlier onset of leaf senescence. In addition, transcript and selective hormone profiling of gibberellins and abscisic acid revealed changes only in the former coupled to changes in transcripts encoding enzymes of gibberellin biosynthesis. The data obtained are discussed in the context of the importance of this enzyme in both photosynthetic and respiratory metabolism as well as in programs of plant development connected to carbon-nitrogen interactions.


Assuntos
Frutas/crescimento & desenvolvimento , Complexo Cetoglutarato Desidrogenase/metabolismo , Folhas de Planta/fisiologia , Solanum lycopersicum/fisiologia , Ácido Abscísico/metabolismo , Respiração Celular , Senescência Celular , Clorofila/metabolismo , Ciclo do Ácido Cítrico/fisiologia , DNA Antissenso , Enzimas/genética , Enzimas/metabolismo , Etilenos/metabolismo , Flores , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Complexo Cetoglutarato Desidrogenase/genética , Ácidos Cetoglutáricos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Análise em Microsséries , Fotossíntese/genética , Fotossíntese/fisiologia , Desenvolvimento Vegetal , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Piridinas/metabolismo
2.
Amino Acids ; 39(4): 1055-66, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20473773

RESUMO

Transgenic tomato (Solanum lycopersicum) plants were generated targeting the cytosolic NADP-dependent isocitrate dehydrogenase gene (SlICDH1) via the RNA interference approach. The resultant transformants displayed a relatively mild reduction in the expression and activity of the target enzyme in the leaves. However, biochemical analyses revealed that the transgenic lines displayed a considerable shift in metabolism, being characterized by decreases in the levels of the TCA cycle intermediates, total amino acids, photosynthetic pigments, starch and NAD(P)H. The plants showed little change in photosynthesis with the exception of a minor decrease in maximum photosynthetic efficiency (F (v)/F (m)), and a small decrease in growth compared to the wild type. These results reveal that even small changes in cytosolic NADP-dependent isocitrate dehydrogenase activity lead to noticeable alterations in the activities of enzymes involved in primary nitrate assimilation and in the synthesis of 2-oxoglutarate derived amino acids. These data are discussed within the context of current models for the role of the various isoforms of isocitrate dehydrogenase within plant amino acid metabolism.


Assuntos
Aminoácidos/análise , Isocitrato Desidrogenase/metabolismo , Fotossíntese , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Respiração Celular , Ciclo do Ácido Cítrico/fisiologia , Citosol/enzimologia , Citosol/metabolismo , DNA Complementar , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ácidos Cetoglutáricos/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , NADP/metabolismo , Nitrogênio/metabolismo , Fotossíntese/genética , Pigmentação , Pigmentos Biológicos/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Reação em Cadeia da Polimerase , RNA de Plantas/genética
3.
Mol Plant ; 3(1): 156-73, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20035036

RESUMO

Transgenic tomato (Solanum lycopersicum) plants were generated expressing a fragment of the mitochondrial NAD-dependent isocitrate dehydrogenase gene (SlIDH1) in the antisense orientation. The transgenic plants displayed a mild reduction in the activity of the target enzyme in the leaves but essentially no visible alteration in growth from the wild-type. Fruit size and yield were, however, reduced. These plants were characterized by relatively few changes in photosynthetic parameters, but they displayed a minor decrease in maximum photosynthetic efficiency (Fv/Fm). Furthermore, a clear reduction in flux through the tricarboxylic acid (TCA) cycle was observed in the transformants. Additionally, biochemical analyses revealed that the transgenic lines exhibited considerably altered metabolism, being characterized by slight decreases in the levels of amino acids, intermediates of the TCA cycle, photosynthetic pigments, starch, and NAD(P)H levels, but increased levels of nitrate and protein. Results from these studies show that even small changes in mitochondrial NAD-dependent isocitrate dehydrogenase activity lead to noticeable alterations in nitrate assimilation and suggest the presence of different strategies by which metabolism is reprogrammed to compensate for this deficiency.


Assuntos
Isocitrato Desidrogenase/metabolismo , Mitocôndrias/enzimologia , Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/enzimologia , Solanum lycopersicum/metabolismo , Ciclo do Ácido Cítrico/genética , Ciclo do Ácido Cítrico/fisiologia , Isocitrato Desidrogenase/classificação , Isocitrato Desidrogenase/genética , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos , Fotossíntese/genética , Fotossíntese/fisiologia , Filogenia , Pigmentação/genética , Pigmentação/fisiologia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Plant Physiol ; 147(1): 101-14, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18337490

RESUMO

Superoxide dismutases (SODs) are key components of the plant antioxidant defense system. While plastidic and cytosolic isoforms have been extensively studied, the importance of mitochondrial SOD at a cellular and whole-plant level has not been established. To address this, transgenic Arabidopsis (Arabidopsis thaliana) plants were generated in which expression of AtMSD1, encoding the mitochondrial manganese (Mn)SOD, was suppressed by antisense. The strongest antisense line showed retarded root growth even under control growth conditions. There was evidence for a specific disturbance of mitochondrial redox homeostasis in seedlings grown in liquid culture: a mitochondrially targeted redox-sensitive green fluorescent protein was significantly more oxidized in the MnSOD-antisense background. In contrast, there was no substantial change in oxidation of cytosolically targeted redox-sensitive green fluorescent protein, nor changes in antioxidant defense components. The consequences of altered mitochondrial redox status of seedlings were subtle with no widespread increase of mitochondrial protein carbonyls or inhibition of mitochondrial respiratory complexes. However, there were specific inhibitions of tricarboxylic acid (TCA) cycle enzymes (aconitase and isocitrate dehydrogenase) and an inhibition of TCA cycle flux in isolated mitochondria. Nevertheless, total respiratory CO2 output of seedlings was not decreased, suggesting that the inhibited TCA cycle enzymes can be bypassed. In older, soil-grown plants, redox perturbation was more pronounced with changes in the amount and/or redox poise of ascorbate and glutathione. Overall, the results demonstrate that reduced MnSOD affects mitochondrial redox balance and plant growth. The data also highlight the flexibility of plant metabolism with TCA cycle inhibition having little effect on overall respiratory rates.


Assuntos
Arabidopsis/enzimologia , Ciclo do Ácido Cítrico , Mitocôndrias/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Superóxido Dismutase/metabolismo , Elementos Antissenso (Genética) , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Respiração Celular/fisiologia , Homeostase/fisiologia , Oxirredução , Fenótipo , Carbonilação Proteica/fisiologia , Plântula/enzimologia , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
5.
Plant Physiol ; 147(1): 115-27, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18359839

RESUMO

Transgenic tomato (Solanum lycopersicum) plants, expressing a fragment of the mitochondrial citrate synthase gene in the antisense orientation and exhibiting mild reductions in the total cellular activity of this enzyme, displayed essentially no visible phenotypic alteration from the wild type. A more detailed physiological characterization, however, revealed that although these plants were characterized by relatively few changes in photosynthetic parameters they displayed a decreased relative flux through the tricarboxylic acid cycle and an increased rate of respiration. Furthermore, biochemical analyses revealed that the transformants exhibited considerably altered metabolism, being characterized by slight decreases in the levels of organic acids of the tricarboxylic acid cycle, photosynthetic pigments, and in a single line in protein content but increases in the levels of nitrate, several amino acids, and starch. We additionally determined the maximal catalytic activities of a wide range of enzymes of primary metabolism, performed targeted quantitative PCR analysis on all three isoforms of citrate synthase, and conducted a broader transcript profiling using the TOM1 microarray. Results from these studies confirmed that if the lines were somewhat impaired in nitrate assimilation, they were not severely affected by this, suggesting the presence of strategies by which metabolism is reprogrammed to compensate for this deficiency. The results are discussed in the context of carbon-nitrogen interaction and interorganellar coordination of metabolism.


Assuntos
Carbono/metabolismo , Citrato (si)-Sintase/metabolismo , Ciclo do Ácido Cítrico , Nitrogênio/metabolismo , Solanum lycopersicum/enzimologia , Aminoácidos/metabolismo , Respiração Celular/fisiologia , Ritmo Circadiano/fisiologia , Clonagem Molecular , DNA Complementar , Flores/fisiologia , Frutas/fisiologia , Expressão Gênica , Isoenzimas/metabolismo , Luz , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Mitocôndrias/enzimologia , Nitratos/metabolismo , Fotossíntese/fisiologia , Pigmentos Biológicos/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...