Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocrinology ; 161(5)2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32157309

RESUMO

Endothelial progenitor cells (EPCs) play a key role in neovascularization and have been linked to improved cardiovascular outcomes. Although there is a well-established inverse relationship between androgen levels and cardiovascular mortality in men, the role of androgens in EPC function is not fully understood. In this study, we investigated the effects of androgens on 2 subpopulations of EPCs, early EPCs (EEPCs) and late outgrowth EPCs (OECs), and their relationships with coronary collateralization. Early EPCs and OECs were isolated from the peripheral blood of young healthy men and treated with dihydrotestosterone (DHT) with or without androgen receptor (AR) antagonist, hydroxyflutamide, in vitro. Dihydrotestosterone treatment enhanced AR-mediated proliferation, migration, and tubulogenesis of EEPCs and OECs in a dose-dependent manner. Furthermore, DHT augmented EPC sensitivity to extracellular stimulation by vascular endothelial growth factor (VEGF) via increased surface VEGF receptor expression and AKT activation. In vivo, xenotransplantation of DHT pretreated human EPCs augmented blood flow recovery and angiogenesis in BALB/c nude male mice, compared to mice receiving untreated EPCs, following hindlimb ischemia. In particular, DHT pretreated human OECs exhibited higher reparative potential than EEPCs in augmenting postischemic blood flow recovery in mice. Furthermore, whole blood was collected from the coronary sinus of men with single vessel coronary artery disease (CAD) who underwent elective percutaneous intervention (n = 23). Coronary collateralization was assessed using the collateral flow index. Serum testosterone and EPC levels were measured. In men with CAD, circulating testosterone was positively associated with the extent of coronary collateralization and the levels of OECs. In conclusion, androgens enhance EPC function and promote neovascularization after ischemia in mice and are associated with coronary collateralization in men.


Assuntos
Androgênios/farmacologia , Circulação Colateral/efeitos dos fármacos , Circulação Coronária/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/fisiopatologia , Di-Hidrotestosterona/farmacologia , Células Progenitoras Endoteliais/transplante , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Receptores Androgênicos/metabolismo , Transplante Heterólogo , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Elife ; 62017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28323620

RESUMO

We wish to identify determinants of endothelial lineage. Murine embryonic stem cells (mESC) were fused with human endothelial cells in stable, non-dividing, heterokaryons. Using RNA-seq, it is possible to discriminate between human and mouse transcripts in these chimeric heterokaryons. We observed a temporal pattern of gene expression in the ESCs of the heterokaryons that recapitulated ontogeny, with early mesodermal factors being expressed before mature endothelial genes. A set of transcriptional factors not known to be involved in endothelial development was upregulated, one of which was POU class 3 homeobox 2 (Pou3f2). We confirmed its importance in differentiation to endothelial lineage via loss- and gain-of-function (LOF and GOF). Its role in vascular development was validated in zebrafish embryos using morpholino oligonucleotides. These studies provide a systematic and mechanistic approach for identifying key regulators in directed differentiation of pluripotent stem cells to somatic cell lineages.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias/fisiologia , Células Endoteliais/fisiologia , Animais , Fusão Celular , Perfilação da Expressão Gênica , Humanos , Camundongos , Peixe-Zebra
3.
Diabetes ; 63(2): 675-87, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24198286

RESUMO

Impaired angiogenesis in ischemic tissue is a hallmark of diabetes. Thioredoxin-interacting protein (TXNIP) is an exquisitely glucose-sensitive gene that is overexpressed in diabetes. As TXNIP modulates the activity of the key angiogenic cytokine vascular endothelial growth factor (VEGF), we hypothesized that hyperglycemia-induced dysregulation of TXNIP may play a role in the pathogenesis of impaired angiogenesis in diabetes. In the current study, we report that high glucose-mediated overexpression of TXNIP induces a widespread impairment in endothelial cell (EC) function and survival by reducing VEGF production and sensitivity to VEGF action, findings that are rescued by silencing TXNIP with small interfering RNA. High glucose-induced EC dysfunction was recapitulated in normal glucose conditions by overexpressing either TXNIP or a TXNIP C247S mutant unable to bind thioredoxin, suggesting that TXNIP effects are largely independent of thioredoxin activity. In streptozotocin-induced diabetic mice, TXNIP knockdown to nondiabetic levels rescued diabetes-related impairment of angiogenesis, arteriogenesis, blood flow, and functional recovery in an ischemic hindlimb. These findings were associated with in vivo restoration of VEGF production to nondiabetic levels. These data implicate a critical role for TXNIP in diabetes-related impairment of ischemia-mediated angiogenesis and identify TXNIP as a potential therapeutic target for the vascular complications of diabetes.


Assuntos
Proteínas de Transporte/metabolismo , Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Neovascularização Fisiológica/fisiologia , Tiorredoxinas/metabolismo , Animais , Glicemia , Proteínas de Transporte/genética , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Relação Dose-Resposta a Droga , Células Endoteliais/fisiologia , Inativação Gênica , Humanos , Masculino , Camundongos , Músculo Esquelético , Transdução de Sinais , Tiorredoxinas/genética
4.
Curr Opin Endocrinol Diabetes Obes ; 17(3): 277-83, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20389240

RESUMO

PURPOSE OF REVIEW: Striking sex differences exist not only in the incidence of cardiovascular disease, but also in the clinical outcomes. Although cardiovascular events occur earlier in men, in women, it appears they have poorer short-term and long-term outcomes following these events compared to men. Thus, intrinsic sex differences may exist not only in atherogenesis, but also with respect to cardiovascular adaptation/repair in response to ischemia and/or infarction. Angiogenesis, the growth of new blood vessels, is essential for organ development and is critical to cardiovascular repair/regeneration. Although the effect of estrogen on angiogenesis has been studied extensively, the role of androgens has remained largely unexplored. RECENT FINDINGS: Multiple lines of evidence now suggest an important role for androgens in cardiovascular repair and regeneration. Studies suggest that androgens stimulate angiogenesis via vascular endothelial growth factor-related mechanisms and by the stimulation of erythropoietin production. Furthermore, endothelial progenitor cells, important in angiogenesis, appear to be hormonally regulated and an important target of androgen action. SUMMARY: Given the age-related decline in androgens, the findings discussed here have implications for therapeutic angiogenesis and androgen replacement therapies in aging and hypogonadal men.


Assuntos
Androgênios/fisiologia , Fenômenos Fisiológicos Cardiovasculares , Neovascularização Fisiológica/fisiologia , Envelhecimento/fisiologia , Doenças Cardiovasculares/fisiopatologia , Feminino , Humanos , Masculino , Regeneração/fisiologia , Caracteres Sexuais
5.
J Exp Med ; 207(2): 345-52, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20071503

RESUMO

Mounting evidence suggests that in men, serum levels of testosterone are negatively correlated to cardiovascular and all-cause mortality. We studied the role of androgens in angiogenesis, a process critical in cardiovascular repair/regeneration, in males and females. Androgen exposure augmented key angiogenic events in vitro. Strikingly, this occurred in male but not female endothelial cells (ECs). Androgen receptor (AR) antagonism or gene knockdown abrogated these effects in male ECs. Overexpression of AR in female ECs conferred androgen sensitivity with respect to angiogenesis. In vivo, castration dramatically reduced neovascularization of Matrigel plugs. Androgen treatment fully reversed this effect in male mice but had no effect in female mice. Furthermore, orchidectomy impaired blood-flow recovery from hindlimb ischemia, a finding rescued by androgen treatment. Our findings suggest that endogenous androgens modulate angiogenesis in a sex-dependent manner, with implications for the role of androgen replacement in men.


Assuntos
Di-Hidrotestosterona/metabolismo , Neovascularização Patológica/fisiopatologia , Neovascularização Fisiológica/fisiologia , Antagonistas de Receptores de Andrógenos , Animais , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Castração , Di-Hidrotestosterona/farmacologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Membro Posterior/irrigação sanguínea , Humanos , Isquemia/tratamento farmacológico , Isquemia/fisiopatologia , Masculino , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Receptores Androgênicos/biossíntese , Recuperação de Função Fisiológica , Fatores Sexuais
6.
Vasc Med ; 14(2): 153-66, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19366823

RESUMO

The discovery, over a decade ago, of endothelial progenitor cells that are able to participate in neovascularization of adult tissue has been greeted enthusiastically because of the potential for new cell-based therapies for therapeutic angiogenesis. Since that time, an ever-growing list of candidate cells has been proposed for cardiovascular regeneration. However, to date, pre-clinical and clinical studies evaluating the therapeutic potential of various cell therapies have reported conflicting results, generating controversy. Key issues within the field of cell therapy research include a lack of uniform cellular definitions, as well as inadequate functional characterization of the role of putative stem/progenitor cells in angiogenesis. Given the mixed results of initial clinical studies, there is now a scientific imperative to understand better the vascular biology of candidate cells in order to better translate cell therapy to the bedside. This review will provide a translationally relevant overview of the biology of candidate stem/progenitor cells for therapeutic angiogenesis.


Assuntos
Células-Tronco Adultas/transplante , Doenças Cardiovasculares/cirurgia , Células-Tronco Embrionárias/transplante , Células Endoteliais/transplante , Neovascularização Fisiológica , Transplante de Células-Tronco , Adulto , Animais , Doenças Cardiovasculares/fisiopatologia , Diferenciação Celular , Linhagem da Célula , Movimento Celular , Proliferação de Células , Humanos , Transplante de Células-Tronco/efeitos adversos , Transplante de Células-Tronco/métodos , Resultado do Tratamento
7.
J Am Coll Cardiol ; 51(6): 660-8, 2008 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-18261686

RESUMO

OBJECTIVES: An endothelial cell (EC)-specific angiogenesis assay was developed to functionally characterize angiogenic properties of 2 distinct putative endothelial progenitor cells (EPCs): early EPCs and late outgrowth endothelial cells (OECs). BACKGROUND: Endothelial progenitor cells promote revascularization of ischemic tissue. However, the nature of different EPCs and their role in angiogenesis remains debated. METHODS: Tubulogenesis was assessed by immunohistochemistry in co-cultures of differentiated ECs (including human umbilical vein, coronary artery, and microvascular ECs) or non-ECs with monolayers of human fibroblasts (MRC5). Using adaptations of the co-culture assay, early EPCs and OECs, isolated from peripheral blood mononuclear cells, were assessed by 3-dimensional immunofluorescence microscopy for their capacity for: 1) independent tubulogenesis; 2) incorporation into pre-existing vascular networks; and 3) paracrine angiogenic effects using transwell cultures. RESULTS: Branched interconnecting EC-specific tubules formed with all differentiated ECs after 72 h. Proangiogenic and antiangiogenic agents modulated tubulogenesis appropriately (vascular endothelial growth factor 10 ng: +142 +/- 13%, 1 microM anti-vascular endothelial growth factor: -44 +/- 7% vs. control, p < 0.001). In contrast, early EPCs, along with nonendothelial cell types, failed to independently form tubules or incorporate into differentiated EC tubules. Nevertheless, early EPCs indirectly augmented tubulogenesis by differentiated ECs even when physically separated by transwells (+115 +/- 4% vs. control; p < 0.001). By contrast, OECs independently formed tubules and incorporated into differentiated EC tubules but exerted no significant paracrine angiogenic effects. CONCLUSIONS: A novel EC-specific tubulogenesis assay highlights strikingly different angiogenic properties of different EPCs: late OECs directly participate in tubulogenesis, whereas early EPCs augment angiogenesis in a paracrine fashion, with implications for optimizing cell therapies for neovascularization.


Assuntos
Células Endoteliais , Endotélio/fisiologia , Neovascularização Fisiológica , Células-Tronco/fisiologia , Bioensaio , Humanos , Imuno-Histoquímica , Técnicas In Vitro
8.
Int J Cardiol ; 105(1): 40-5, 2005 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16207543

RESUMO

Danshen (Salvia miltiorrhiza) and Gegen (Radix puerariae) are two herbs used in traditional Chinese medicine, most commonly for their putative cardioprotective and anti-atherosclerotic effects. In this study, we investigated the effect of a preparation of these herbs on two key processes in the early stages of atherosclerosis; macrophage lipid loading and monocyte adhesion to endothelial cells. Human monocyte derived macrophages (HMDMs) were treated with 0.1-1.0 mg/ml of the herbal mixture in aqueous buffers and loaded with acetylated LDL (AcLDL) (50 microg/ml) for 72 h, and analyzed for cholesterol (C) and cholesteryl esters (CE), via HPLC. Human endothelial cell monolayers were also treated with 0.1-1.0 mg/ml of the herbal mixture and monocyte adhesion measured. Cell adhesion molecules E-selectin, ICAM-1 and VCAM-1 were assessed via ELISA. Compared to control conditions, the herbal mixture induced a significant dose-related decrease in the total cholesterol (free and esterified) in the HMDMs (p<0.001 by ANOVA). By contrast, the herbs also induced an increase in ICAM-1 expression (p<0.001) and monocyte adhesion at higher concentrations (p<0.05). In conclusion, treatment of cells with this preparation of Danshen and Gegen, a commonly used Chinese health supplement, results in a dose-related suppression of AcLDL uptake by human macrophages, and an increase in the level of ICAM-1 expression and adhesion of monocytes to endothelial cells. These herbs therefore show the ability to modulate key early events in atherosclerosis.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Células Endoteliais/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Salvia miltiorrhiza , Aterosclerose/metabolismo , Aterosclerose/patologia , Colesterol/biossíntese , Relação Dose-Resposta a Droga , Selectina E/biossíntese , Células Endoteliais/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/biossíntese , Interleucina-1/biossíntese , Lipoproteínas LDL/administração & dosagem , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Preparações de Plantas/farmacologia , Fatores de Tempo , Molécula 1 de Adesão de Célula Vascular/biossíntese
9.
Clin Exp Pharmacol Physiol ; 32(10): 839-44, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16173945

RESUMO

1. In the present study, we sought to determine whether physiological or pathophysiological concentrations of obesity related peptides influence the key early atherogenic events of monocyte adhesion to endothelial cells and adhesion molecule expression using primary human cells. 2. Human umbilical vein endothelial cells were grown to confluence and human monocytes were obtained by elutriation. Adhesion was assessed by automated cell counting and cell adhesion molecule expression (E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1)) was assayed by ELISA. 3. Experimental conditions included untreated control, ghrelin (100, 150, 450 and 1350 pmol/L), resistin (15, 40 and 100 ng/mL) and combined leptin and insulin (combinations of 30 and 120 pmol/L insulin and 5, 50 and 500 ng/mL leptin). 4. Both resistin and ghrelin produced modest but significant increases in VCAM-1 expression (110 +/- 4 and 117 +/- 13% compared with controls, respectively; both P

Assuntos
Moléculas de Adesão Celular/biossíntese , Células Endoteliais/efeitos dos fármacos , Hormônios Peptídicos/farmacologia , Resistina/farmacologia , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Selectina E/biossíntese , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Ensaio de Imunoadsorção Enzimática , Grelina , Humanos , Insulina/farmacologia , Molécula 1 de Adesão Intercelular/biossíntese , Leptina/farmacologia , Monócitos/citologia , Monócitos/efeitos dos fármacos , Fatores de Tempo , Molécula 1 de Adesão de Célula Vascular/biossíntese
10.
J Gastroenterol Hepatol ; 20(10): 1610-5, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16174082

RESUMO

BACKGROUND: Gastric epithelial cell lines have been utilized extensively as tools to define aspects of the interactions between Helicobacter pylori and host epithelial cells. Fetal calf serum (FCS) is employed as a growth stimulant, but it is unclear whether this agent may in itself alter host responses. METHODS: Two gastric epithelial cell lines were utilized to ascertain the effects of varying FCS concentration on cellular responses following H. pylori infection. Media containing 0%, 5% or 10% FCS was added to cell lines prior to infection with H. pylori of defined genotype. Cellular interleukin (IL)-8 production was measured as a marker of cellular response. Effects of altered FCS upon cell viability were also determined by trypan blue exclusion. RESULTS: Interleukin-8 production by AGS cells following H. pylori infection was not altered by variation of media FCS concentration. However, KATO-III cells produced greater amounts of IL-8 when media was FCS-free than at 5% or 10% FCS. Although cellular viability was not altered in AGS cells exposed to varied concentrations of FCS, viability was decreased in serum-free KATO-III cells, but not when cells were kept at 5% FCS. CONCLUSIONS: Serum-derived factors alter cellular responses to H. pylori infection in a cell-line-dependent manner and impaired cellular viability may relate to this effect. However, the mechanisms for these observations are unclear and further work is now required to determine the nature of these important interactions.


Assuntos
Bovinos/sangue , Bovinos/embriologia , Mucosa Gástrica/microbiologia , Mucosa Gástrica/fisiopatologia , Infecções por Helicobacter/fisiopatologia , Helicobacter pylori , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Sangue Fetal , Mucosa Gástrica/metabolismo , Infecções por Helicobacter/metabolismo , Humanos , Interleucina-8/biossíntese
11.
J Gastroenterol Hepatol ; 19(9): 982-7, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15304113

RESUMO

BACKGROUND AND AIMS: Helicobacter pylori infection of the stomach is commonly associated with infiltration of neutrophils. Gastric epithelial cells are recognized as central mediators of tissue responses to this organism. The aim of the present study was to ascertain patterns of production of three neutrophil chemoattractant chemokines following infection of gastric epithelial cells with H. pylori in vitro. METHODS: Two gastric cancer-derived epithelial cell lines were infected with H. pylori organisms of previously defined cagE and cagA status for periods of up to 24 h. The production of three chemokines (interleukin [IL]-8, epithelial neutrophil activating protein [ENA]-78 and growth-related oncogene [GRO]-alpha) over this time was measured in culture supernatants using immunoassays. RESULTS: Both IL-8 and GRO-alpha were produced by both AGS and KATO-III cells in response to H. pylori infection, and in a cag PAI-dependent manner. ENA-78, however, was not increased following H. pylori infection. CONCLUSIONS: GRO-alpha is expressed by epithelial cells following H. pylori infection along with IL-8. Both may contribute to neutrophilic infiltration present in gastric mucosa associated with H. pylori infection. In contrast, H. pylori infection does not lead to an increased synthesis of ENA-78, suggesting that this may not be as important in vivo.


Assuntos
Quimiocinas CXC/metabolismo , Mucosa Gástrica/metabolismo , Infecções por Helicobacter/metabolismo , Helicobacter pylori , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interleucina-8/metabolismo , Análise de Variância , Linhagem Celular , Quimiocina CXCL1 , Quimiocina CXCL5 , Ensaio de Imunoadsorção Enzimática , Mucosa Gástrica/microbiologia , Humanos , Técnicas In Vitro , Células Tumorais Cultivadas
12.
Dig Dis Sci ; 49(11-12): 1830-5, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15628712

RESUMO

Helicobacter pylori colonization of the stomach results in a chronic-active gastritis characterized by mucosal infiltration of both neutrophils and lymphocytes. A T helper lymphocyte (Th1) profile predominates, which promotes the chronic and persistent inflammatory changes in the gastric mucosa in response to this bacterial pathogen. The cytokine interleukin-18 induces production of interferon-gamma by activated T lymphocytes and promotes a Th1 profile. An in vitro model system was utilized to determine the role of interleukin-18 in response to infection of gastric epithelial cells by H. pylori. H. pylori isolates, characterized with respect to cagE and cagA and VacA status, were employed to infect AGS gastric epithelial cells. Interleukin-18 production was determined by immunoassay. Infection of AGS cells with H. pylori resulted in a 1.8-fold increase in interleukin-18 compared to uninfected cells (22.7+/-2.4 vs. 12.7+/-2.2 pg/ml; P < 0.005). This interleukin-18 response was independent of the cagE status of infecting strains (23.3+/-1.9 vs. 26.3+/-3.6 pg/ml; P = NS). Exposure of AGS cells to recombinant interleukin-18 resulted in dose-dependent and time-dependent secretion of interleukin-8 that was maximal following exposure to 100 pg/ml interleukin-18 for 24 hr (292+/-5 pg/ml, versus 102+/-14 pg/ml in unstimulated cells; P < 0.001). Interleukin-8 secretion was inhibited following pretreatment of cells with anti-interleukin-18 antibody and by pharmacological inhibition of the nuclear transcription factor, NF-kappaB. These findings demonstrate that interleukin-18 can enhance host chemokine response to H. pylori infection.


Assuntos
Células Epiteliais/imunologia , Mucosa Gástrica/imunologia , Infecções por Helicobacter/imunologia , Helicobacter pylori , Interleucina-18/biossíntese , Linhagem Celular , Relação Dose-Resposta Imunológica , Regulação da Expressão Gênica , Humanos , Interleucina-8/biossíntese , NF-kappa B/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...