Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2401934, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860565

RESUMO

Amphiphilic block copolymer and lipids can be assembled into hybrid vesicles (HVs), which are an alternative to liposomes and polymersomes. Block copolymers that have either poly(sitostryl methacrylate) or statistical copolymers of sitosteryl methacrylate and butyl methacrylate as the hydrophobic part and a poly(carboxyethyl acrylate) hydrophilic segment are synthesized and characterized. These block copolymers assemble into small HVs with soybean L-α-phosphatidylcholine (soyPC), confirmed by electron microscopy and small-angle X-ray scattering. The membrane's hybrid nature is illustrated by fluorescence resonance energy transfer between labeled building blocks. The membrane packing, derived from spectra when using Laurdan as an environmentally sensitive fluorescent probe, is comparable between small HVs and the corresponding liposomes with molecular sitosterol, although the former show indications of transmembrane asymmetry. Giant HVs with homogenous distribution of the block copolymers and soyPC in their membranes are assembled using the electroformation method. The lateral diffusion of both building blocks is slowed down in giant HVs with higher block copolymer content, but their permeability toward (6)-carboxy-X-rhodamine is higher compared to giant vesicles made of soyPC and molecular sitosterol. This fundamental effort contributes to the rapidly expanding understanding of the integration of natural membrane constituents with designed synthetic compounds to form hybrid membranes.

2.
Soft Matter ; 18(15): 3076-3086, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35373807

RESUMO

Understanding the process-property relations of helical polymers using molecular simulations has been an attractive research field over the years. Specifically, isotactic polypropylene still remains a challenge for current computational experimentation, as it exhibits phenomena such as crystallization that emerge on large spatial and temporal scales. Coarse-graining is an efficient technique for approaching such phenomena, although previous coarse-grained models lack in preserving important atomistic and structural details. In this paper we develop a new coarse-grained model, based on the popular MARTINI force field, that is able to reproduce the helical behavior of isotactic polypropylene. To test the model, the predicted statistical and structural properties (characteristic ratio, density, entanglement molecular weight, solubility parameter in the melt) are compared with previous simulation results and available experimental data. For the development of the new coarse-grained force field, a single unperturbed chain Monte Carlo algorithm has been implemented: an efficient algorithm which samples conformations representative of a melt by simulating just a single chain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...