Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 6709, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317696

RESUMO

The dynamics of deep sea explosive eruptions, the dispersion of the pyroclasts, and how submarine eruptions differ from the subaerial ones are still poorly known due to the limited access to sea environments. Here, we analyze two ash layers representative of the proximal and distal deposits of two submarine eruptions from a 500 to 800 m deep cones of the Marsili Seamount (Italy). Fall deposits occur at a distance of more than 1.5 km from the vent, while volcanoclastic flows are close to the flanks of the cone. Ash shows textures indicative of poor magma-water interaction and a gas-rich environment. X-ray microtomography data on ash morphology and bubbles, along with gas solubility and ash dispersion models suggest 200-400 m high eruptive columns and a sea current velocity <5 cm/s. In deep sea environments, Strombolian-like eruptions are similar to the subaerial ones provided that a gas cloud occurs around the vent.

2.
Sci Total Environ ; 695: 133796, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31425998

RESUMO

The incorrect wastewater management and the land use distribution lead to severe environmental problems, creating heavy eutrophication condition in surface-water; when surface-water/groundwater relationships exist, the organic matter transferred to the aquifer oxidizes and triggers redox processes (i.e. Terminal Electron Accepting Processes, TEAPs), that provoke severe groundwater quality modifications and complicate its exploitation and management. For this reason, the definition of the redox zonation within an aquifer is an effective tool for the identification of the contamination sources and for the conceptual model refinement, when remediation strategies need to be planned. Although the redox processes are dynamic reactions, the aquifer redox zonation is generally aimed to identify homogenous zones, characterized by a predominant TEAP. To overcome this methodological approach, the Multi-Collocated Factorial Kriging (MCFK) was applied to redox-related physico-chemical parameters, which allowed identifying their spatial relationships at different scales, transferring this method from precision agriculture and soil science to hydrogeochemistry. The selected study area is the San Pedro Sula aquifer (Honduras), a multi-layer alluvial aquifer characterized by well-known surface-water/groundwater interactions and heavy eutrophicated streams. Here, high concentrations of Mn and Fe were found in the aquifer. The MCFK results identified a short-range (2300 m) factor, highlighting a strong relation between Mn concentrations and anoxic conditions, due to the organic matter transfer from eutrophicated surface-water into the aquifer. Simultaneously, the relationship between Fe and turbidity is related to a fine Fe(III) oxi-hydroxide colloidal phase, developed when different redox conditions of groundwater mix up in the wells. The long-range (6000 m) factor points out that Fe is related to redox processes at a wider scale, especially in the northern San Pedro Sula alluvial plain. These results are supported by both the Principal Component Analysis and the hydrogeochemical numerical modeling. As a result, different TEAPs occur simultaneously in contaminated areas, acting at multiple scales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...