Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(14): 143605, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31702170

RESUMO

The simple resonant Rabi oscillation of a two-level system in a single-mode coherent field reveals complex features at the mesoscopic scale, with oscillation collapses and revivals. Using slow circular Rydberg atoms interacting with a superconducting microwave cavity, we explore this phenomenon in an unprecedented range of interaction times and photon numbers. We demonstrate the efficient production of cat states, which are the quantum superposition of coherent components with nearly opposite phases and sizes in the range of few tens of photons. We measure cuts of their Wigner functions revealing their quantum coherence and observe their fast decoherence. This experiment opens promising perspectives for the rapid generation and manipulation of nonclassical states in cavity and circuit quantum electrodynamics.

2.
Phys Rev Lett ; 120(6): 063601, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29481238

RESUMO

How do isolated quantum systems approach an equilibrium state? We experimentally and theoretically address this question for a prototypical spin system formed by ultracold atoms prepared in two Rydberg states with different orbital angular momenta. By coupling these states with a resonant microwave driving, we realize a dipolar XY spin-1/2 model in an external field. Starting from a spin-polarized state, we suddenly switch on the external field and monitor the subsequent many-body dynamics. Our key observation is density dependent relaxation of the total magnetization much faster than typical decoherence rates. To determine the processes governing this relaxation, we employ different theoretical approaches that treat quantum effects on initial conditions and dynamical laws separately. This allows us to identify an intrinsically quantum component to the relaxation attributed to primordial quantum fluctuations.

3.
Phys Rev Lett ; 118(25): 253603, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28696734

RESUMO

We realize a coherent transfer between a laser-accessible low-angular-momentum Rydberg state and the circular Rydberg level with maximal angular momentum. It is induced by a radio frequency field with a high-purity σ^{+} polarization resonant on Stark transitions inside the hydrogenic Rydberg manifold. We observe over a few microseconds more than 20 coherent Rabi oscillations between the initial Rydberg state and the circular level. We characterize these many-Rydberg-level oscillations and find them in perfect agreement with a simple model. This coherent transfer opens the way to hybrid quantum gates bridging the gap between optical communication and quantum information manipulations with microwave cavity and circuit quantum electrodynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...