Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 14(4): 1914-20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24628529

RESUMO

We report complementary metal-oxide-semiconductor (CMOS)-compatible integration of compound semiconductors on Si substrates. InAs and GaAs nanowires are selectively grown in vertical SiO2 nanotube templates fabricated on Si substrates of varying crystallographic orientations, including nanocrystalline Si. The nanowires investigated are epitaxially grown, single-crystalline, free from threading dislocations, and with an orientation and dimension directly given by the shape of the template. GaAs nanowires exhibit stable photoluminescence at room temperature, with a higher measured intensity when still surrounded by the template. Si-InAs heterojunction nanowire tunnel diodes were fabricated on Si(100) and are electrically characterized. The results indicate a high uniformity and scalability in the fabrication process.

2.
Nano Lett ; 13(3): 917-24, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23237482

RESUMO

Strain engineering has been used to increase the charge carrier mobility of complementary metal-oxide-semiconductor transistors as well as to boost and tune the performance of optoelectronic devices, enabling wavelength tuning, polarization selectivity and suppression of temperature drifts. Semiconducting nanowires benefit from enhanced mechanical properties, such as increased yield strength, that turn out to be beneficial to amplify strain effects. Here we use photoluminescence (PL) to study the effect of uniaxial stress on the electronic properties of GaAs/Al0.3Ga0.7As/GaAs core/shell nanowires. Both compressive and tensile mechanical stress were applied continuously and reversibly to the nanowire, resulting in a remarkable decrease of the bandgap of up to 296 meV at 3.5% of strain. Raman spectra were measured and analyzed to determine the axial strain in the nanowire and the Poisson ratio in the <111> direction. In both PL and Raman spectra, we observe fingerprints of symmetry breaking due to anisotropic deformation of the nanowire. The shifts observed in the PL and Raman spectra are well described by bulk deformation potentials for band structure and phonon energies. The fact that exceptionally high elastic strain can be applied to semiconducting nanowires makes them ideally suited for novel device applications that require a tuning of the band structure over a broad range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...