Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Arch. Soc. Esp. Oftalmol ; 96(4): 181-188, abr. 2021. ilus, tab
Artigo em Espanhol | IBECS | ID: ibc-217600

RESUMO

Objetivo Determinar y comparar la precisión diagnóstica en glaucoma de dos modelos de aprendizaje profundo, usando imágenes en infrarrojo del nervio óptico, del fondo de ojo y de la capa de células ganglionares (CCG). Métodos Hemos seleccionado una muestra de pacientes normales y con glaucoma. Se recogieron tres imágenes en infrarrojo con un tomógrafo de coherencia óptica de tipo spectral-domain (SD-OCT). La primera corresponde a la imagen de barrido confocal del fondo de ojo, la segunda es un recorte de la primera centrada en el nervio óptico, y la tercera fue la imagen del corte SD-OCT de la CCG. Nuestros modelos de aprendizaje profundo se desarrollaron en la plataforma MATLAB con las redes neuronales preentrenadas ResNet50 y VGG19. Resultados Se recogieron 498 ojos de 298 pacientes. De los 498 ojos, 312 son glaucomatosos y 186 son normales. En la prueba, la precisión de los modelos fue de 96% (ResNet50) y 96% (VGG19) para las imágenes de la CCG, de 90% (ResNet50) y 90% (VGG19) para las imágenes del nervio óptico y de 82% (ResNet50) y 84% (VGG19) para las de fondo de ojo. El área ROC en la prueba fue de 0,96 (ResNet50) y 0,97 (VGG19) para las imágenes de la CCG, de 0,87 (ResNet50) y 0,88 (VGG19) para las imágenes del nervio óptico, y de 0,79 (ResNet50) y 0,81 (VGG19) para las imágenes de fondo de ojo. Conclusiones Los dos modelos de aprendizaje profundo analizados, aplicados sobre las imágenes de la CCG, ofrecen una alta precisión diagnóstica, sensibilidad y especificidad en el diagnóstico de glaucoma (AU)


Objective To determine and compare the diagnostic precision in glaucoma of two deep learning models using infrared images of the optic nerve, eye fundus, and the ganglion cell layer (GCL). Methods We have selected a sample of normal and glaucoma patients. Three infrared images were registered with a spectral-domain optical coherence tomography (SD-OCT). The first corresponds to the confocal scan image of the fundus, the second is a cut-out of the first centered on the optic nerve, and the third was the SD-OCT image of the GCL. Our deep learning models are developed on the MatLab platform with the ResNet50 and VGG19 pre-trained neural networks. Results 498 eyes of 298 patients were collected. Of the 498 eyes, 312 are glaucoma and 186 are normal. In the test, the precision of the models was 96% (ResNet50) and 96% (VGG19) for the GCL images, 90% (ResNet50) and 90% (VGG19) for the optic nerve images and 82% (ResNet50) and 84% (VGG19) for the fundus images. The ROC area in the test was 0.96 (ResNet50) and 0.97 (VGG19) for the GCL images, 0.87 (ResNet50) and 0.88 (VGG19) for the optic nerve images, and 0.79 (ResNet50) and 0.81 (VGG19) for the fundus images. Conclusions Both deep learning models, applied to the GCL images, achieve high diagnostic precision, sensitivity and specificity in the diagnosis of glaucoma (AU)


Assuntos
Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Células Ganglionares da Retina , Glaucoma/diagnóstico por imagem , Tomografia de Coerência Óptica , Estudos de Casos e Controles , Estudos Retrospectivos , Valor Preditivo dos Testes , Sensibilidade e Especificidade
2.
Arch Soc Esp Oftalmol (Engl Ed) ; 96(4): 181-188, 2021 Apr.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-33279356

RESUMO

OBJECTIVE: To determine and compare the diagnostic precision in glaucoma of two deep learning models using infrared images of the optic nerve, eye fundus, and the ganglion cell layer (GCL). METHODS: We have selected a sample of normal and glaucoma patients. Three infrared images were registered with a spectral-domain optical coherence tomography (SD-OCT). The first corresponds to the confocal scan image of the fundus, the second is a cut-out of the first centered on the optic nerve, and the third was the SD-OCT image of the GCL. Our deep learning models are developed on the MatLab platform with the ResNet50 and VGG19 pre-trained neural networks. RESULTS: 498 eyes of 298 patients were collected. Of the 498 eyes, 312 are glaucoma and 186 are normal. In the test, the precision of the models was 96% (ResNet50) and 96% (VGG19) for the GCL images, 90% (ResNet50) and 90% (VGG19) for the optic nerve images and 82% (ResNet50) and 84% (VGG19) for the fundus images. The ROC area in the test was 0.96 (ResNet50) and 0.97 (VGG19) for the GCL images, 0.87 (ResNet50) and 0.88 (VGG19) for the optic nerve images, and 0.79 (ResNet50) and 0.81 (VGG19) for the fundus images. CONCLUSIONS: Both deep learning models, applied to the GCL images, achieve high diagnostic precision, sensitivity and specificity in the diagnosis of glaucoma.

3.
J Ophthalmol ; 2017: 2340236, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28660077

RESUMO

PURPOSE: To observe the relationship between topographic hemoglobin levels in the optic nerve head (ONH), the rim thickness (BMO-MRW), and retinal nerve fiber layer (RNFL) thickness. METHODS: 96 normal eyes and 82 glaucomas were examined using TOP strategy (Octopus 300 perimeter), SPECTRALIS OCT, and Laguna ONhE program which estimates hemoglobin from conventional color photographs (Horus Scope DEC 200 fundus camera). RESULTS: The correlation between Laguna ONhE glaucoma discriminant function (GDF) and SPECTRALIS BMO-MRW was R = 0.81 (P < 0.0001), similar to that between the BMO-MRW and BMO-RNFL thicknesses (R = 0.85, P < 0.0001) (P = 0.227 between both R values). GDF correlated well with RNFL thicknesses in the 360 degrees around the nerve, similar to mean perimetric sensitivity (MS) and BMO-MRW. The amount of hemoglobin in the nasal and temporal sectors showed low correlation with superior and inferior RNFL thicknesses. The superotemporal and inferotemporal sectors located on the vertical diameter of the disk showed good intercorrelation but without a clear RNFL topographic relationship. CONCLUSION: GDF showed high correlation with RNFL thickness. Except in the nasal and temporal sectors, ONH hemoglobin correlated well with RNFL thickness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...