Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2403518, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016114

RESUMO

2D Ti3C2Tx MXene-based film electrodes with metallic conductivity and high pseudo-capacitance are of considerable interest in cutting-edge research of capacitive deionization (CDI). Further advancement in practical use is however impeded by their intrinsic limitations, e.g., tortuous ion diffusion pathway of layered stacking, vulnerable chemical stability, and swelling-prone nature of hydrophilic MXene nanosheet in aqueous environment. Herein, a nanoporous 2D/2D heterostructure strategy is established to leverage both merits of holey MXene (HMX) and holey graphene oxide (HGO) nanosheets, which optimize ion transport shortcuts, alleviate common restacking issues, and improve film's mechanical and chemical stability. In this design, the nanosized in-plane holes in both handpicked building blocks build up ion diffusion shortcuts in the composite laminates to accelerate the transport and storage of ions. As a direct outcome, the HMX/rHGO films exhibit remarkable desalination capacity of 57.91 mg g-1 and long-term stability in 500 mg L-1 NaCl solution at 1.2 V. Moreover, molecular dynamics simulations and ex situ wide angle X-ray scattering jointly demonstrate that the conductive 2D/2D networks and ultra-short ion diffusion channels play critical roles in the ion intercalation/deintercalation process of HMX/rHGO films. The study paves an alternative design concept of freestanding CDI electrodes with superior ion transport efficiency.

2.
ACS Nano ; 18(4): 3707-3719, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38230678

RESUMO

The true promise of MXene as a practical supercapacitor electrode hinges on the simultaneous advancement of its three-dimensional (3D) assembly and the engineering of its nanoscopic architecture, two critical factors for facilitating mass transport and enhancing an electrode's charge-storage performance. Herein, we present a straightforward strategy to engineer robust 3D freestanding MXene (Ti3C2Tx) hydrogels with hierarchically porous structures. The tetraamminezinc(II) complex cation ([Zn(NH3)4]2+) is selected to electrostatically assemble colloidal MXene nanosheets into a 3D interconnected hydrogel framework, followed by a mild oxidative acid-etching process to create nanoholes on the MXene surface. These hierarchically porous, conductive holey-MXene frameworks facilitate 3D transport of both electrons and electrolyte ions to deliver an excellent specific capacitance of 359.2 F g-1 at 10 mV s-1 and superb capacitance retention of 79% at 5000 mV s-1, representing a 42.2% and 15.3% improvement over pristine MXene hydrogel, respectively. Even at a commercial-standard mass loading of 10.1 mg cm-2, it maintains an impressive capacitance retention of 52% at 1000 mV s-1. This rational design of an electrode by engineering nanoholes on MXene nanosheets within a 3D porous framework dictates a significant step forward toward the practical use of MXene and other 2D materials in electrochemical energy storage systems.

3.
Nanomaterials (Basel) ; 13(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37887937

RESUMO

Fe3C nanoparticles hold promise as catalysts and nanozymes, but their low activity and complex preparation have hindered their use. Herein, this study presents a synthetic alternative toward efficient, durable, and recyclable, Fe3C-nanoparticle-encapsulated nitrogen-doped hierarchically porous carbon membranes (Fe3C/N-C). By employing a simple one-step synthetic method, we utilized wood as a renewable and environmentally friendly carbon precursor, coupled with poly(ionic liquids) as a nitrogen and iron source. This innovative strategy offers sustainable, high-performance catalysts with improved stability and reusability. The Fe3C/N-C exhibits an outstanding peroxidase-like catalytic activity toward the oxidation of 3,3',5,5'-tetramethylbenzidine in the presence of hydrogen peroxide, which stems from well-dispersed, small Fe3C nanoparticles jointly with the structurally unique micro-/macroporous N-C membrane. Owing to the remarkable catalytic activity for mimicking peroxidase, an efficient and sensitive colorimetric method for detecting ascorbic acid over a broad concentration range with a low limit of detection (~2.64 µM), as well as superior selectivity, and anti-interference capability has been developed. This study offers a widely adaptable and sustainable way to synthesize an Fe3C/N-C membrane as an easy-to-handle, convenient, and recoverable biomimetic enzyme with excellent catalytic performance, providing a convenient and sensitive colorimetric technique for potential applications in medicine, biosensing, and environmental fields.

5.
Small ; 18(19): e2200622, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35403815

RESUMO

High overpotentials required to cross the energy barriers of both hydrogen and oxygen evolution reactions (HER and OER) limit the overall efficiency of hydrogen production by electrolysis of water. The rational design of heterostructures and anchoring single-atom catalysts (SAC) are the two successful strategies to lower these overpotentials, but realization of such advanced nanostructures with adequate electronic control is challenging. Here, the heterostructure of edge-oriented molybdenum selenide (MoSe2 ) and nickel-cobalt-selenide (NiCo2 Se4 ) realized through selenization of mixed metal oxide/hydroxide is presented. The as-developed sheet-on-sheet heterostructure shows excellent HER performance, requiring an overpotential of 89 mV to get a current density 10 mA cm-2 and a Tafel slope of 65 mV dec-1 . Further, resultant MoSe2 @NiCo2 Se4 is photochemically decorated with single-atom iridium, which on electrochemical surface reconstruction displays outstanding OER activity, requiring only 200 and 313 mV overpotentials for 10 and 500 mA cm-2 current densities, respectively. A full cell electrolyzer comprising of MoSe2 @NiCo2 Se4 as cathode and its SAC-Ir decorated counterpart as anode requires only 1.51 V to attain 10 mA cm-2 current density. Density functional theory calculation reveals the importance of rational heterostructure design and synergistic electronic coupling of single atom iridium in HER and OER processes, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...