Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 164, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307869

RESUMO

miR-Blood is a high-quality, small RNA expression atlas for the major components of human peripheral blood (plasma, erythrocytes, thrombocytes, monocytes, neutrophils, eosinophils, basophils, natural killer cells, CD4+ T cells, CD8+ T cells, and B cells). Based on the purified blood components from 52 individuals, the dataset provides a comprehensive repository for the expression of 4971 small RNAs from eight non-coding RNA classes.


Assuntos
MicroRNAs , Humanos , Eosinófilos , Eritrócitos , MicroRNAs/sangue , Monócitos , Neutrófilos/metabolismo
2.
J Thorac Oncol ; 18(11): 1504-1523, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37437883

RESUMO

INTRODUCTION: Lung cancer remains the deadliest cancer in the world, and lung cancer survival is heavily dependent on tumor stage at the time of detection. Low-dose computed tomography screening can reduce mortality; however, annual screening is limited by low adherence in the United States of America and still not broadly implemented in Europe. As a result, less than 10% of lung cancers are detected through existing programs. Thus, there is a great need for additional screening tests, such as a blood test, that could be deployed in the primary care setting. METHODS: We prospectively recruited 1384 individuals meeting the National Lung Screening Trial demographic eligibility criteria for lung cancer and collected stabilized whole blood to enable the pipetting-free collection of material, thus minimizing preanalytical noise. Ultra-deep small RNA sequencing (20 million reads per sample) was performed with the addition of a method to remove highly abundant erythroid RNAs, and thus open bandwidth for the detection of less abundant species originating from the plasma or the immune cellular compartment. We used 100 random data splits to train and evaluate an ensemble of logistic regression classifiers using small RNA expression of 943 individuals, discovered an 18-small RNA feature consensus signature (miLung), and validated this signature in an independent cohort (441 individuals). Blood cell sorting and tumor tissue sequencing were performed to deconvolve small RNAs into their source of origin. RESULTS: We generated diagnostic models and report a median receiver-operating characteristic area under the curve of 0.86 (95% confidence interval [CI]: 0.84-0.86) in the discovery cohort and generalized performance of 0.83 in the validation cohort. Diagnostic performance increased in a stage-dependent manner ranging from 0.73 (95% CI: 0.71-0.76) for stage I to 0.90 (95% CI: 0.89-0.90) for stage IV in the discovery cohort and from 0.76 to 0.86 in the validation cohort. We identified a tumor-shed, plasma-bound ribosomal RNA fragment of the L1 stalk as a dominant predictor of lung cancer. The fragment is decreased after surgery with curative intent. In additional experiments, results of dried blood spot collection and sequencing revealed that small RNA analysis could potentially be conducted through home sampling. CONCLUSIONS: These data suggest the potential of a small RNA-based blood test as a viable alternative to low-dose computed tomography screening for early detection of smoking-associated lung cancer.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Detecção Precoce de Câncer/métodos , Pulmão/patologia , Fumar , RNA
3.
JTO Clin Res Rep ; 3(8): 100369, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35880086

RESUMO

Introduction: Patients with advanced, non-oncogene-driven NSCLC with high programmed death-ligand 1 (PD-L1) expression are eligible for treatment with immunotherapy. There is, however, an urgent medical need for biomarkers identifying cases that require additional combination with chemotherapy. We previously uncovered a myeloid-based 5-microRNA (5-miRNA) signature that identified responders to immunotherapy in PD-L1 unstratified patients; however, its potential utility in treatment guidance for patients with PD-L1 high tumors remained unclear. Methods: We trained (n = 68) and validated (n = 56) a 5-miRNA multivariable Cox proportional hazards model predictive of overall survival on small RNA sequencing data of whole blood samples prospectively collected before the commencement of immunotherapy for stage IV NSCLC with PD-L1 tumor proportion score greater than or equal to 50%, treated with PD-1 inhibitor monotherapy (immunotherapy alone [IO]). Specificity was demonstrated in a control cohort treated with immunochemotherapy (ICT) (n = 31). Results: The revised 5-miRNA risk score (miRisk) stratified IO-treated patients and identified a high-risk group with significantly shorter overall survival (hazard ratio = 5.24, 95% confidence interval: 2.17-12.66, p < 0.001). There was a significant interaction between the miRisk score and type of treatment (IO or ICT, p = 0.036), indicating that the miRisk score may serve as a predictive biomarker for immunotherapy response. Furthermore, the miRisk score could identify a group of high-risk patients who may benefit from treatment with ICT as opposed to IO (hazard ratio = 0.35, 95% confidence interval: 0.15-0.82, p = 0.018). Conclusions: The miRisk score can distinguish a group of patients with PD-L1 high, stage IV NSCLC likely to benefit from adding chemotherapy to immunotherapy and may support treatment decisions as a blood-based complementary diagnostic.

4.
NPJ Precis Oncol ; 6(1): 19, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361874

RESUMO

Immunotherapies have recently gained traction as highly effective therapies in a subset of late-stage cancers. Unfortunately, only a minority of patients experience the remarkable benefits of immunotherapies, whilst others fail to respond or even come to harm through immune-related adverse events. For immunotherapies within the PD-1/PD-L1 inhibitor class, patient stratification is currently performed using tumor (tissue-based) PD-L1 expression. However, PD-L1 is an accurate predictor of response in only ~30% of cases. There is pressing need for more accurate biomarkers for immunotherapy response prediction. We sought to identify peripheral blood biomarkers, predictive of response to immunotherapies against lung cancer, based on whole blood microRNA profiling. Using three well-characterized cohorts consisting of a total of 334 stage IV NSCLC patients, we have defined a 5 microRNA risk score (miRisk) that is predictive of overall survival following immunotherapy in training and independent validation (HR 2.40, 95% CI 1.37-4.19; P < 0.01) cohorts. We have traced the signature to a myeloid origin and performed miRNA target prediction to make a direct mechanistic link to the PD-L1 signaling pathway and PD-L1 itself. The miRisk score offers a potential blood-based companion diagnostic for immunotherapy that outperforms tissue-based PD-L1 staining.

5.
PLoS Comput Biol ; 12(6): e1004960, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27253392

RESUMO

Deciphering the effects of nonsynonymous mutations on protein structure is central to many areas of biomedical research and is of fundamental importance to the study of molecular evolution. Much of the investigation of protein evolution has focused on mutations that leave a protein's folded structure essentially unchanged. However, to evolve novel folds of proteins, mutations that lead to large conformational modifications have to be involved. Unraveling the basic biophysics of such mutations is a challenge to theory, especially when only one or two amino acid substitutions cause a large-scale conformational switch. Among the few such mutational switches identified experimentally, the one between the GA all-α and GB α+ß folds is extensively characterized; but all-atom simulations using fully transferrable potentials have not been able to account for this striking switching behavior. Here we introduce an explicit-chain model that combines structure-based native biases for multiple alternative structures with a general physical atomic force field, and apply this construct to twelve mutants spanning the sequence variation between GA and GB. In agreement with experiment, we observe conformational switching from GA to GB upon a single L45Y substitution in the GA98 mutant. In line with the latent evolutionary potential concept, our model shows a gradual sequence-dependent change in fold preference in the mutants before this switch. Our analysis also indicates that a sharp GA/GB switch may arise from the orientation dependence of aromatic π-interactions. These findings provide physical insights toward rationalizing, predicting and designing evolutionary conformational switches.


Assuntos
Evolução Molecular , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/genética , Genes de Troca/genética , Instabilidade Genômica/genética , Modelos Químicos , Simulação por Computador , Proteínas de Ligação ao GTP/ultraestrutura , Variação Genética , Modelos Genéticos , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Análise de Sequência de Proteína/métodos
7.
J R Soc Interface ; 11(100): 20140419, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25165599

RESUMO

The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence-structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by 'hidden' conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution.


Assuntos
Evolução Molecular , Dobramento de Proteína , Proteínas , Estabilidade Proteica , Proteínas/química , Proteínas/genética
8.
PLoS One ; 8(5): e61075, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717385

RESUMO

Life-history traits controlling the duration and timing of developmental phases in the life cycle jointly determine fitness. Therefore, life-history traits studied in isolation provide an incomplete view on the relevance of life-cycle variation for adaptation. In this study, we examine genetic variation in traits covering the major life history events of the annual species Arabidopsis thaliana: seed dormancy, vegetative growth rate and flowering time. In a sample of 112 genotypes collected throughout the European range of the species, both seed dormancy and flowering time follow a latitudinal gradient independent of the major population structure gradient. This finding confirms previous studies reporting the adaptive evolution of these two traits. Here, however, we further analyze patterns of co-variation among traits. We observe that co-variation between primary dormancy, vegetative growth rate and flowering time also follows a latitudinal cline. At higher latitudes, vegetative growth rate is positively correlated with primary dormancy and negatively with flowering time. In the South, this trend disappears. Patterns of trait co-variation change, presumably because major environmental gradients shift with latitude. This pattern appears unrelated to population structure, suggesting that changes in the coordinated evolution of major life history traits is adaptive. Our data suggest that A. thaliana provides a good model for the evolution of trade-offs and their genetic basis.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Dormência de Plantas , Sementes/crescimento & desenvolvimento , Arabidopsis/genética , Evolução Biológica , Europa (Continente) , Flores/genética , Genótipo , Germinação , Fenótipo , Filogeografia , Polimorfismo de Nucleotídeo Único , Estações do Ano , Sementes/genética
9.
PLoS Comput Biol ; 8(9): e1002659, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028272

RESUMO

Experimental studies have shown that some proteins exist in two alternative native-state conformations. It has been proposed that such bi-stable proteins can potentially function as evolutionary bridges at the interface between two neutral networks of protein sequences that fold uniquely into the two different native conformations. Under adaptive conflict scenarios, bi-stable proteins may be of particular advantage if they simultaneously provide two beneficial biological functions. However, computational models that simulate protein structure evolution do not yet recognize the importance of bi-stability. Here we use a biophysical model to analyze sequence space to identify bi-stable or multi-stable proteins with two or more equally stable native-state structures. The inclusion of such proteins enhances phenotype connectivity between neutral networks in sequence space. Consideration of the sequence space neighborhood of bridge proteins revealed that bi-stability decreases gradually with each mutation that takes the sequence further away from an exactly bi-stable protein. With relaxed selection pressures, we found that bi-stable proteins in our model are highly successful under simulated adaptive conflict. Inspired by these model predictions, we developed a method to identify real proteins in the PDB with bridge-like properties, and have verified a clear bi-stability gradient for a series of mutants studied by Alexander et al. (Proc Nat Acad Sci USA 2009, 106:21149-21154) that connect two sequences that fold uniquely into two different native structures via a bridge-like intermediate mutant sequence. Based on these findings, new testable predictions for future studies on protein bi-stability and evolution are discussed.


Assuntos
Adaptação Fisiológica/genética , Evolução Molecular , Modelos Químicos , Modelos Genéticos , Proteínas/química , Proteínas/genética , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Simulação por Computador , Variação Genética/genética , Dados de Sequência Molecular
10.
Proc Natl Acad Sci U S A ; 109(37): 14888-93, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22927372

RESUMO

A fundamental question in molecular evolution is how proteins can adapt to new functions while being conserved for an existing function at the same time. Several theoretical models have been put forward to explain this apparent paradox. The most popular models include neofunctionalization, subfunctionalization (SUBF) by degenerative mutations, and dosage models. All of these models focus on adaptation after gene duplication. A newly proposed model named "Escape from Adaptive Conflict" (EAC) includes adaptive processes before and after gene duplication that lead to multifunctional proteins, and divergence (SUBF). Support for the importance of multifunctionality for the evolution of new protein functions comes from two experimental observations. First, many enzymes have highly evolvable promiscuous side activities. Second, different structural states of the same protein can be associated with different functions. How these observations may be related to the EAC model, under which conditions EAC is possible, and how the different models relate to each other is still unclear. Here, we present a theoretical framework that uses biophysical principles to infer the roles of functional promiscuity, gene dosage, gene duplication, point mutations, and selection pressures in the evolution of proteins. We find that selection pressures can determine whether neofunctionalization or SUBF is the more likely evolutionary process. Multifunctional proteins, arising during EAC evolution, allow rapid adaptation independent of gene duplication. This becomes a crucial advantage when gene duplications are rare. Finally, we propose that an increase in mutational robustness, not necessarily functional optimization, can be the sole driving force behind SUBF.


Assuntos
Adaptação Biológica/genética , Evolução Molecular , Aptidão Genética/genética , Modelos Biológicos , Proteínas/genética , Simulação por Computador , Duplicação Gênica , Mutação/genética , Proteínas/metabolismo , Seleção Genética
11.
Curr Opin Struct Biol ; 20(3): 390-6, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20347587

RESUMO

Proteins are surreptitious cellular agents: while robust against mutations they are very evolvable; most are marginally stable and dynamic but others form a stable cellular matrix. Some genes seem to have emerged de novo from random pieces of genomic DNA, others may have been around for billions of years, virtually unchanged. Genomic and structural data provide new insights on how proteins came such a long way, probably from an initially very small set of domains and domain arrangements: gene duplicates provide the raw material for adaptive transitions (for example from one fold to another) which are very rare, albeit not impossible. 'New' proteins predominantly arise via tinkering, that is by their underlying genes recruiting and adapting smaller fragments of neighbouring DNA or by modular rearrangements of established domain combinations. Such rearrangements arise predominantly via fusion and terminal loss.


Assuntos
Evolução Molecular , Proteínas/genética , Animais , Transferência Genética Horizontal , Genômica , Humanos , Dobramento de Proteína , Proteínas/química , Proteínas/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...