Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Polym Au ; 4(3): 255-265, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38882035

RESUMO

The precise sequence of a protein's primary structure is essential in determining its folding pathways. To emulate the complexity of these biomolecules, functional block copolymers consisting of segmented triblocks with distinct functionalities positioned in a sequence-specific manner are designed to control the polymer chain compaction. Triblock polymers P- b -C- b -F and P- b -F- b -C and random diblock copolymer P- b -C- r -F consist of a hydrophilic poly(ethylene oxide) (PEO) block and a hydrophobic block with coumarin (C) and ferrocene (F) moieties that are grafted in a sequence-specific or random manner onto the hydrophilic block. External stimuli such as UVB light, redox, and chemical cues influence the functional hydrophobic block to alter the packing parameters that are monitored with spectroscopic and scattering techniques. Interestingly, the positioning of the stimuli-responsive moiety within the hydrophobic block of P- b -C- b -F, P- b -F- b -C, and P- b -C- r -F affects the extent of the hydrophobic-hydrophilic balance in block copolymers that renders orthogonal control in stimuli-responsive transformation of self-assembled vesicles to micelles.

2.
Analyst ; 149(14): 3828-3838, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38855814

RESUMO

Norfloxacin (NOX), a broad spectrum fluoroquinolone (FQ) antibiotic, is commonly detected in environmental residues, potentially contributing to biological drug resistance. In this paper, an aptamer recognition probe has been used to develop a label-free liquid crystal-based biosensor for simple and robust optical detection of NOX in aqueous solutions. Stimuli-receptive liquid crystals (LCs) have been employed to report aptamer-target binding events at the LC-aqueous interface. The homeotropic alignment of LCs at the aqueous-LC interface is due to the self-assembly of the cationic surfactant cetyltrimethylammonium bromide (CTAB). In the presence of the negatively charged NOX aptamer, the ordering changes to planar/tilted. On addition of NOX, the aptamer-NOX binding causes redistribution of CTAB at the LC-aqueous interface and the homeotropic orientation is restored. This results in a bright-to-dark optical transition under a polarized optical microscope (POM). This optical transition serves as a visual indicator to mark the presence of NOX. The devised aptasensor demonstrates high specificity with a minimum detection limit of 5 nM (1.596 ppb). Moreover, the application of the developed aptasensor for the detection of NOX in freshwater and soil samples underscores its practical utility in environmental monitoring. This proposed LC-based method offers several advantages over conventional detection techniques for a rapid, feasible and convenient way to detect norfloxacin.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Lagos , Limite de Detecção , Cristais Líquidos , Norfloxacino , Norfloxacino/análise , Norfloxacino/química , Aptâmeros de Nucleotídeos/química , Cristais Líquidos/química , Lagos/análise , Lagos/química , Técnicas Biossensoriais/métodos , Solo/química , Antibacterianos/análise , Antibacterianos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Cetrimônio/química
3.
Anal Chem ; 96(9): 3780-3786, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38407028

RESUMO

The confinement of liquid crystals (LCs) in spherical microdroplets results in exotic internal configurations and topological defects in response to physical and chemical stimuli. Recent exploration into the placement of colloids on the surface of LC microdroplets has led to the design of a new class of functional materials with patterned surface properties. It is established that the placement of a colloid on a LC droplet surface can pin the topological defect at the interface, thereby restricting changes in the LC configuration. Herein, we build upon the handful of reports published to provide a fundamental understanding of the colloid positioning in response to external stimuli. Using polystyrene (PS) colloids, we explored the dynamics of particle self-assembly in response to an interfacial enzymatic breakdown of poly-l-lysine by trypsin. We found that for a significant population of droplets, the positioning of the colloid is unaffected by the changes in the internal ordering of LC. Inspired by the new observations, we delved deeper to understand the role of interfacial stabilizers in modulating the preferential alignment of LC and the placement of colloidal microparticles. We also demonstrated that for a certain population of droplets, the positioning of the colloids remains unperturbed in response to multistep reversible adsorption of interfacial amphiphiles. Our findings reveal interesting possibilities of correlating the stimuli-responsive switching of internal configurations of LC with colloid placement on the particle-decorated LC droplets.

4.
Chem Commun (Camb) ; 59(88): 13195-13198, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37850559

RESUMO

We design amphiphilic di-block copolymers (P-b-F and P-b-C) tethered with stimuli-responsive ferrocene and coumarin hydrophobic pendants that exhibit chain collapse behaviour in response to light, redox and chemical cues, with subsequent transformation of the vesicles into micelles. Interestingly, the co-assembled vesicles of the polymer blend under orthogonal stimuli furnish self-sorted micelles and vesicles.

5.
Langmuir ; 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36634050

RESUMO

After revolutionizing the field of electro-optic displays, liquid crystals (LCs) are emerging as functional soft materials with wide-ranging biomedical implications. Integrating smart sensor designs with label-free imaging presents exciting opportunities in diagnostics. In this Perspective, we present an elegant collage of the key findings that demonstrate the utility of LC biosensors in diagnosing a disease or infection in clinical samples, cellular microenvironments, or bodily fluids. We emphasize the currently prevalent diagnostic techniques and the advances made using LCs in achieving greater sensitivity, a simplified strategy, multiplexed detection, and so on. We collate the landmark contributions in translational research in LC-based diagnostics. We believe that developing LC-based biosensors presents a new therapeutic window in point-of-care diagnostics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...