Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38203738

RESUMO

The gut microbiome plays a pivotal role in the modulation of host responses during viral infections, and recent studies have underscored its significance in the context of coronavirus disease 2019 (COVID-19). We aimed to investigate the dynamics and compositional changes in the gut microbiome of COVID-19 patients, addressing both the acute phase and the recovery process, with a particular focus on the emergence of post-COVID-19 conditions. Involving 146 COVID-19 patients and 110 healthy controls, this study employed a shotgun metagenomics approach for cross-sectional and longitudinal analyses with one- and three-month follow-ups. We observed a decline in taxonomic diversity among hospitalized COVID-19 patients compared to healthy controls, while a subsequent increase in alpha diversity was shown during the recovery process. A notable contribution of Enterococcus faecium was identified in the acute phase of the infection, accompanied by an increasing abundance of butyrate-producing bacteria (e.g., Roseburia, Lachnospiraceae_unclassified) during the recovery period. We highlighted a protective role of the Prevotella genus in the long-term recovery process and suggested a potential significance of population-specificity in the early gut microbiome markers of post-acute COVID-19 syndrome. Our study represents distinctive gut microbiome signatures in COVID-19, with potential diagnostic and prognostic implications, pinpointing potential modulators of the disease progression.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Humanos , Estudos Transversais , Síndrome de COVID-19 Pós-Aguda , Pacientes , Clostridiales
2.
Front Endocrinol (Lausanne) ; 14: 1232143, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795356

RESUMO

Introduction: Research findings of the past decade have highlighted the gut as the main site of action of the oral antihyperglycemic agent metformin despite its pharmacological role in the liver. Extensive evidence supports metformin's modulatory effect on the composition and function of gut microbiota, nevertheless, the underlying mechanisms of the host responses remain elusive. Our study aimed to evaluate metformin-induced alterations in the intestinal transcriptome profiles at different metabolic states. Methods: The high-fat diet-induced mouse model of obesity and insulin resistance of both sexes was developed in a randomized block experiment and bulk RNA-Seq of the ileum tissue was the method of choice for comparative transcriptional profiling after metformin intervention for ten weeks. Results: We found a prominent transcriptional effect of the diet itself with comparatively fewer genes responding to metformin intervention. The overrepresentation of immune-related genes was observed, including pronounced metformin-induced upregulation of immunoglobulin heavy-chain variable region coding Ighv1-7 gene in both high-fat diet and control diet-fed animals. Moreover, we provide evidence of the downregulation NF-kappa B signaling pathway in the small intestine of both obese and insulin-resistant animals as well as control animals after metformin treatment. Finally, our data pinpoint the gut microbiota as a crucial component in the metformin-mediated downregulation of NF-kappa B signaling evidenced by a positive correlation between the Rel and Rela gene expression levels and abundances of Parabacteroides distasonis, Bacteroides spp., and Lactobacillus spp. in the gut microbiota of the same animals. Discussion: Our study supports the immunomodulatory effect of metformin in the ileum of obese and insulin-resistant C57BL/6N mice contributed by intestinal immunoglobulin responses, with a prominent emphasis on the downregulation of NF-kappa B signaling pathway, associated with alterations in the composition of the gut microbiome.


Assuntos
Resistência à Insulina , Metformina , Masculino , Animais , Camundongos , Feminino , Metformina/farmacologia , Metformina/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , NF-kappa B/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Insulina/uso terapêutico , Modelos Animais de Doenças , Sistema Imunitário/metabolismo , Transdução de Sinais , Imunoglobulinas
3.
Gut Microbes ; 15(1): 2188663, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36927522

RESUMO

Antidiabetic drug metformin alters the gut microbiome composition in the context of type 2 diabetes and other diseases; however, its effects have been mainly studied using fecal samples, which offer limited information about the intestinal site-specific effects of this drug. Our study aimed to characterize the spatial variation of the gut microbiome in response to metformin treatment by using a high-fat diet-induced type 2 diabetes mouse model of both sexes. Four intestinal parts, each at the luminal and mucosal layer level, were analyzed in this study by performing 16S rRNA sequencing covering six variable regions (V1-V6) of the gene and thus allowing to obtain in-depth information about the microbiome composition. We identified significant differences in gut microbiome diversity in each of the intestinal parts regarding the alpha and beta diversities. Metformin treatment altered the abundance of different genera in all studied intestinal sites, with the most pronounced effect in the small intestine, where Lactococcus increased remarkably. The abundance of Lactobacillus was substantially lower in male mice compared to female mice in all locations, in addition to an enrichment of opportunistic pathogens. Diet type and intestinal layer had significant effects on microbiome composition at each of the sites studied. We observed a different effect of metformin treatment on the analyzed subsets, indicating the multiple dimensions of metformin's effect on the gut microbiome.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Metformina , Masculino , Feminino , Animais , Camundongos , Metformina/farmacologia , Metformina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , RNA Ribossômico 16S/genética , Modelos Animais de Doenças
4.
Front Endocrinol (Lausanne) ; 12: 626359, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815284

RESUMO

Effects of metformin, the first-line drug for type 2 diabetes therapy, on gut microbiome composition in type 2 diabetes have been described in various studies both in human subjects and animals. However, the details of the molecular mechanisms of metformin action have not been fully understood. Moreover, there is a significant lack of information on how metformin affects gut microbiome composition in female mouse models, depending on sex and metabolic status in well controlled experimental setting. Our study aimed to examine metformin-induced alterations in gut microbiome diversity, composition, and functional implications of high-fat diet-induced type 2 diabetes mouse model, using, for the first time in mice study, the shotgun metagenomic sequencing that allows estimation of microorganisms at species level. We also employed a randomized block, factorial study design, and including 24 experimental units allocated to 8 treatment groups to systematically evaluate the effect of sex and metabolic status on metformin interaction with microbiome. We used DNA obtained from fecal samples representing gut microbiome before and after ten weeks-long metformin treatment. We identified 100 metformin-related differentially abundant species in high-fat diet-fed mice before and after the treatment, with most of the species relative abundances increased. In contrast, no significant changes were observed in control diet-fed mice. Functional analysis targeted to carbohydrate, lipid, and amino acid metabolism pathways revealed 14 significantly altered hierarchies. We also observed sex-specific differences in response to metformin treatment. Males experienced more pronounced changes in metabolic markers, while in females the extent of changes in gut microbiome representatives was more marked, indicated by 53 differentially abundant species with more remarkable Log fold changes compared to the combined-sex analysis. The same pattern manifested regarding the functional analysis, where we discovered 5 significantly affected hierarchies in female groups but not in males. Our results suggest that both sexes of animals should be included in future studies focusing on metformin effects on the gut microbiome.


Assuntos
Diabetes Mellitus Tipo 2/microbiologia , Dieta Hiperlipídica , Microbioma Gastrointestinal/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Metagenoma/efeitos dos fármacos , Camundongos
5.
Front Med (Lausanne) ; 8: 626000, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889583

RESUMO

Remaining a major healthcare concern with nearly 29 million confirmed cases worldwide at the time of writing, novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused more than 920 thousand deaths since its outbreak in China, December 2019. First case of a person testing positive for SARS-CoV-2 infection within the territory of the Republic of Latvia was registered on 2nd of March 2020, 9 days prior to the pandemic declaration by WHO. Since then, more than 277,000 tests were carried out confirming a total of 1,464 cases of coronavirus disease 2019 (COVID-19) in the country as of 12th of September 2020. Rapidly reacting to the spread of the infection, an ongoing sequencing campaign was started mid-March in collaboration with the local testing laboratories, with an ultimate goal in sequencing as much local viral isolates as possible, resulting in first full-length SARS-CoV-2 isolate genome sequences from the Baltics region being made publicly available in early April. With 133 viral isolates representing ~9.1% of the total COVID-19 cases during the "first coronavirus wave" in the country (early March, 2020-mid-September, 2020) being completely sequenced as of today, here, we provide a first report on the genetic diversity of Latvian SARS-CoV-2 isolates.

6.
BMC Med Genomics ; 14(1): 18, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33430853

RESUMO

BACKGROUND: Type 2 diabetes complications cause a serious emotional and economical burden to patients and healthcare systems globally. Management of both acute and chronic complications of diabetes, which dramatically impair the quality of patients' life, is still an unsolved issue in diabetes care, suggesting a need for early identification of individuals with high risk for developing diabetes complications. METHODS: We performed a genome-wide association study in 601 type 2 diabetes patients after stratifying them according to the presence or absence of four types of diabetes complications: diabetic neuropathy, diabetic nephropathy, macrovascular complications, and ophthalmic complications. RESULTS: The analysis revealed ten novel associations showing genome-wide significance, including rs1132787 (GYPA, OR = 2.71; 95% CI = 2.02-3.64) and diabetic neuropathy, rs2477088 (PDE4DIP, OR = 2.50; 95% CI = 1.87-3.34), rs4852954 (NAT8, OR = 2.27; 95% CI = 2.71-3.01), rs6032 (F5, OR = 2.12; 95% CI = 1.63-2.77), rs6935464 (RPS6KA2, OR = 2.25; 95% CI = 6.69-3.01) and macrovascular complications, rs3095447 (CCDC146, OR = 2.18; 95% CI = 1.66-2.87) and ophthalmic complications. By applying the targeted approach of previously reported susceptibility loci we managed to replicate three associations: MAPK14 (rs3761980, rs80028505) and diabetic neuropathy, APOL1 (rs136161) and diabetic nephropathy. CONCLUSIONS: Together these results provide further evidence for the implication of genetic factors in the development of type 2 diabetes complications and highlight several potential key loci, able to modify the risk of developing these conditions. Moreover, the candidate variant approach proves a strong and consistent effect for multiple variants across different populations.


Assuntos
Diabetes Mellitus Tipo 2 , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Letônia , Pessoa de Meia-Idade
7.
Front Mol Biosci ; 8: 784080, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087866

RESUMO

Increasing evidence suggests that regular physical exercise not only reduces the risk of cancer but also improves functional capacity, treatment efficacy and disease outcome in cancer patients. At least partially, these effects are mediated by the secretome of the tissues responding to exercise. The secreted molecules can be released in a carrier-free form or enclosed into extracellular vesicles (EVs). Several recent studies have shown that EVs are actively released into circulation during physical exercise. Here, we for the first time investigated the effects of exercise-induced EVs on the progression of cancer in an F344 rat model of metastatic prostate cancer. Although we did not observe a consistent increase in the circulating EV levels, RNA sequencing analysis demonstrated substantial changes in the RNA content of EVs collected before and immediately after forced wheel running exercise as well as differences between EVs from runners at resting state and sedentary rats. The major RNA biotype in EVs was mRNA, followed by miRNA and rRNA. Molecular functions of differentially expressed RNAs reflected various physiological processes including protein folding, metabolism and regulation of immune responses triggered by the exercise in the parental cells. Intravenous administration of exercise-induced EVs into F344 rats with orthotopically injected syngeneic prostate cancer cells PLS10, demonstrated reduction of the primary tumor volume by 35% and possibly-attenuation of lung metastases. Hence, our data provide the first evidence that exercise-induced EVs may modulate tumor physiology and delay the progression of cancer.

8.
PLoS One ; 15(10): e0241338, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33125401

RESUMO

BACKGROUND: The study was conducted to investigate the effects of metformin treatment on the human gut microbiome's taxonomic and functional profile in the Latvian population, and to evaluate the correlation of these changes with therapeutic efficacy and tolerance. METHODS: In this longitudinal observational study, stool samples for shotgun metagenomic sequencing-based analysis were collected in two cohorts. The first cohort included 35 healthy nondiabetic individuals (metformin dose 2x850mg/day) at three time-points during metformin administration. The second cohort was composed of 50 newly-diagnosed type 2 diabetes patients (metformin dose-determined by an endocrinologist) at two concordant times. Patients were defined as Responders if their HbA1c levels during three months of metformin therapy had decreased by ≥12.6 mmol/mol (1%), while in Non-responders HbA1c were decreased by <12.6 mmol/mol (1%). RESULTS: Metformin reduced the alpha diversity of microbiota in healthy controls (p = 0.02) but not in T2D patients. At the species level, reduction in the abundance of Clostridium bartlettii and Barnesiella intestinihominis, as well as an increase in the abundance of Parabacteroides distasonis and Oscillibacter unclassified overlapped between both study groups. A large number of group-specific changes in taxonomic and functional profiles was observed. We identified an increased abundance of Prevotella copri (FDR = 0.01) in the Non-Responders subgroup, and enrichment of Enterococcus faecium, Lactococcus lactis, Odoribacter, and Dialister at baseline in the Responders group. Various taxonomic units were associated with the observed incidence of side effects in both cohorts. CONCLUSIONS: Metformin effects are different in T2D patients and healthy individuals. Therapy induced changes in the composition of gut microbiome revealed possible mediators of observed short-term therapeutic effects. The baseline composition of the gut microbiome may influence metformin therapy efficacy and tolerance in T2D patients and could be used as a powerful prediction tool.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/microbiologia , Microbioma Gastrointestinal/fisiologia , Metformina/uso terapêutico , Adulto , Bacteroidetes/efeitos dos fármacos , Feminino , Humanos , Lactococcus lactis/efeitos dos fármacos , Estudos Longitudinais , Masculino , Microbiota/efeitos dos fármacos , Prevotella/efeitos dos fármacos , Adulto Jovem
9.
PLoS One ; 15(8): e0237400, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32780768

RESUMO

Metformin, a biguanide agent, is the first-line treatment for type 2 diabetes mellitus due to its glucose-lowering effect. Despite its wide application in the treatment of multiple health conditions, the glycemic response to metformin is highly variable, emphasizing the need for reliable biomarkers. We chose the RNA-Seq-based comparative transcriptomics approach to evaluate the systemic effect of metformin and highlight potential predictive biomarkers of metformin response in drug-naïve volunteers with type 2 diabetes in vivo. The longitudinal blood-derived transcriptome analysis revealed metformin-induced differential expression of novel and previously described genes involved in cholesterol homeostasis (SLC46A1 and LRP1), cancer development (CYP1B1, STAB1, CCR2, TMEM176B), and immune responses (CD14, CD163) after administration of metformin for three months. We demonstrate for the first time a transcriptome-based molecular discrimination between metformin responders (delta HbA1c ≥ 1% or 12.6 mmol/mol) and non-responders (delta HbA1c < 1% or 12.6 mmol/mol), that is determined by expression levels of 56 genes, explaining 13.9% of the variance in the therapeutic efficacy of the drug. Moreover, we found a significant upregulation of IRS2 gene (log2FC 0.89) in responders compared to non-responders before the use of metformin. Finally, we provide evidence for the mitochondrial respiratory complex I as one of the factors related to the high variability of the therapeutic response to metformin in patients with type 2 diabetes mellitus.


Assuntos
Análise Química do Sangue , Perfilação da Expressão Gênica , Metformina/farmacologia , Idoso , Colesterol/metabolismo , Feminino , Homeostase/efeitos dos fármacos , Homeostase/genética , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...