Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(28): e2322203121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968122

RESUMO

Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)-a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival. To understand how lineage markers vary across the evolution of lineage plasticity in prostate cancer, we applied single-cell analyses to 21 human prostate tumor biopsies and two genetically engineered mouse models, together with tissue microarray analysis on 131 tumor samples. Not only did we observe a higher degree of phenotypic heterogeneity in castrate-resistant PRAD and NEPC than previously anticipated but also found that the expression of molecules targeted therapeutically, namely PSMA, STEAP1, STEAP2, TROP2, CEACAM5, and DLL3, varied within a subset of gene-regulatory networks (GRNs). We also noted that NEPC and small cell lung cancer subtypes shared a set of GRNs, indicative of conserved biologic pathways that may be exploited therapeutically across tumor types. While this extreme level of transcriptional heterogeneity, particularly in cell surface marker expression, may mitigate the durability of clinical responses to current and future antigen-directed therapies, its delineation may yield signatures for patient selection in clinical trials, potentially across distinct cancer types.


Assuntos
Análise de Célula Única , Masculino , Humanos , Análise de Célula Única/métodos , Animais , Camundongos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Antígenos de Superfície/metabolismo , Antígenos de Superfície/genética , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/metabolismo , Adenocarcinoma/tratamento farmacológico , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/patologia , Carcinoma Neuroendócrino/metabolismo , Carcinoma Neuroendócrino/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico
2.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38645034

RESUMO

Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)--a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival. To understand how lineage markers vary across the evolution of lineage plasticity in prostate cancer, we applied single cell analyses to 21 human prostate tumor biopsies and two genetically engineered mouse models, together with tissue microarray analysis (TMA) on 131 tumor samples. Not only did we observe a higher degree of phenotypic heterogeneity in castrate-resistant PRAD and NEPC than previously anticipated, but also found that the expression of molecules targeted therapeutically, namely PSMA, STEAP1, STEAP2, TROP2, CEACAM5, and DLL3, varied within a subset of gene-regulatory networks (GRNs). We also noted that NEPC and small cell lung cancer (SCLC) subtypes shared a set of GRNs, indicative of conserved biologic pathways that may be exploited therapeutically across tumor types. While this extreme level of transcriptional heterogeneity, particularly in cell surface marker expression, may mitigate the durability of clinical responses to novel antigen-directed therapies, its delineation may yield signatures for patient selection in clinical trials, potentially across distinct cancer types.

3.
Cancer Discov ; 11(12): 3028-3047, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34155000

RESUMO

Lineage plasticity is implicated in treatment resistance in multiple cancers. In lung adenocarcinomas (LUAD) amenable to targeted therapy, transformation to small cell lung cancer (SCLC) is a recognized resistance mechanism. Defining molecular mechanisms of neuroendocrine (NE) transformation in lung cancer has been limited by a paucity of pre/posttransformation clinical samples. Detailed genomic, epigenomic, transcriptomic, and protein characterization of combined LUAD/SCLC tumors, as well as pre/posttransformation samples, supports that NE transformation is primarily driven by transcriptional reprogramming rather than mutational events. We identify genomic contexts in which NE transformation is favored, including frequent loss of the 3p chromosome arm. We observed enhanced expression of genes involved in the PRC2 complex and PI3K/AKT and NOTCH pathways. Pharmacologic inhibition of the PI3K/AKT pathway delayed tumor growth and NE transformation in an EGFR-mutant patient-derived xenograft model. Our findings define a novel landscape of potential drivers and therapeutic vulnerabilities of NE transformation in lung cancer. SIGNIFICANCE: The difficulty in collection of transformation samples has precluded the performance of molecular analyses, and thus little is known about the lineage plasticity mechanisms leading to LUAD-to-SCLC transformation. Here, we describe biological pathways dysregulated upon transformation and identify potential predictors and potential therapeutic vulnerabilities of NE transformation in the lung. See related commentary by Meador and Lovly, p. 2962. This article is highlighted in the In This Issue feature, p. 2945.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Tumores Neuroendócrinos , Carcinoma de Pequenas Células do Pulmão , Adenocarcinoma de Pulmão/tratamento farmacológico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Fosfatidilinositol 3-Quinases/genética , Carcinoma de Pequenas Células do Pulmão/patologia
4.
Nat Struct Mol Biol ; 20(11): 1325-32, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24096364

RESUMO

Little is known about the extent to which individual microRNAs (miRNAs) regulate common processes of tumor biology across diverse cancer types. Using molecular profiles of >3,000 tumors from 11 human cancer types in The Cancer Genome Atlas, we systematically analyzed expression of miRNAs and mRNAs across cancer types to infer recurrent cancer-associated miRNA-target relationships. As we expected, the inferred relationships were consistent with sequence-based predictions and published data from miRNA perturbation experiments. Notably, miRNAs with recurrent target relationships were frequently regulated by genetic and epigenetic alterations across the studied cancer types. We also identify new examples of miRNAs that coordinately regulate cancer pathways, including the miR-29 family, which recurrently regulates active DNA demethylation pathway members TET1 and TDG. The online resource http://cancerminer.org allows exploration and prioritization of miRNA-target interactions that potentially regulate tumorigenesis.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Biologia Computacional/métodos , Metilação de DNA , Epigênese Genética , Perfilação da Expressão Gênica , Humanos
5.
Neuro Oncol ; 15(1): 83-90, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23172372

RESUMO

Medulloblastoma is the most common malignant brain tumor in children, and a substantial number of patients die as a result of tumor progression. Overexpression of CDK6 is present in approximately one-third of medulloblastomas and is an independent poor prognostic marker for this disease. MicroRNA (miR)-124 inhibits expression of CDK6 and prevents proliferation of glioblastoma and medulloblastoma cells in vitro. We examined the effects of miR-124 overexpression on medulloblastoma cells both in vitro and in vivo and compared cell lines that have low and high CDK6 expression. MiR-124 overexpression inhibits the proliferation of medulloblastoma cells, and this effect is mediated mostly through the action of miR-124 upon CDK6. We further show that induced expression of miR-124 potently inhibits growth of medulloblastoma xenograft tumors in rodents. Further testing of miR-124 will help define the ultimate therapeutic potential of preclinical models of medulloblastoma in conjunction with various delivery strategies for treatment.


Assuntos
Ciclo Celular , Proliferação de Células , Neoplasias Cerebelares/prevenção & controle , Meduloblastoma/prevenção & controle , MicroRNAs/genética , Animais , Apoptose , Western Blotting , Linhagem Celular Tumoral , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Humanos , Técnicas Imunoenzimáticas , Meduloblastoma/genética , Meduloblastoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Oncotarget ; 3(10): 1194-203, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23104868

RESUMO

The molecular foundations of lower-grade gliomas (LGGs)-astrocytoma, oligodendroglioma, and oligoastrocytoma-remain less well characterized than those of their fully malignant counterpart, glioblastoma. Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) likely represent initiating pathogenic events. However, while IDH mutations appear to dramatically alter cellular epigenomic landscapes, definitive downstream transformative mechanisms have not been characterized. It remains likely, therefore, that additional genomic abnormalities collaborate with IDH mutation to drive oncogenesis in LGG. We performed whole exome sequencing in 4 LGGs, followed by focused resequencing in an additional 28, and found a high incidence of mutations in the ATRX gene (α thalassemia/mental retardation syndrome X-linked). ATRX forms a core component of a chromatin remodeling complex active in telomere biology. Mutations in ATRX have been identified in multiple tumor types and appear to cause alternative lengthening of telomeres (ALT), a presumed precursor to genomic instability. In our samples, ATRX mutation was entirely restricted to IDH-mutant tumors, closely correlated with TP53 mutation and astrocytic differentiation, and mutually exclusive with 1p/19q codeletion, the molecular hallmark of oligodendroglioma. Moreover, ATRX mutation was highly enriched in tumors of so-called early progenitor-like transcriptional subclass (~85%), which our prior work has linked to specific cells of origin in the forebrain subventricular zone. Finally, ATRX mutation correlated with ALT, providing a mechanistic link to genomic instability. In summary, our findings both identify ATRX mutation as a defining molecular determinant for a large subset of IDH-mutant gliomas and have direct implications on pathogenic mechanisms across the wide spectrum of LGGs.


Assuntos
Neoplasias Encefálicas/genética , DNA Helicases/genética , Exoma/genética , Glioma/genética , Isocitrato Desidrogenase/genética , Mutação/genética , Proteínas Nucleares/genética , Adulto , Idoso , Neoplasias Encefálicas/patologia , DNA de Neoplasias/genética , Feminino , Glioma/patologia , Humanos , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Reação em Cadeia da Polimerase , Prognóstico , Proteína Nuclear Ligada ao X
7.
Mol Syst Biol ; 8: 605, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22929615

RESUMO

Large-scale cancer genomics projects are profiling hundreds of tumors at multiple molecular layers, including copy number, mRNA and miRNA expression, but the mechanistic relationships between these layers are often excluded from computational models. We developed a supervised learning framework for integrating molecular profiles with regulatory sequence information to reveal regulatory programs in cancer, including miRNA-mediated regulation. We applied our approach to 320 glioblastoma profiles and identified key miRNAs and transcription factors as common or subtype-specific drivers of expression changes. We confirmed that predicted gene expression signatures for proneural subtype regulators were consistent with in vivo expression changes in a PDGF-driven mouse model. We tested two predicted proneural drivers, miR-124 and miR-132, both underexpressed in proneural tumors, by overexpression in neurospheres and observed a partial reversal of corresponding tumor expression changes. Computationally dissecting the role of miRNAs in cancer may ultimately lead to small RNA therapeutics tailored to subtype or individual.


Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genômica , Glioblastoma/genética , MicroRNAs/metabolismo , Animais , Linhagem Celular Tumoral , Genoma Humano , Humanos , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Modelos Biológicos , Células-Tronco Neurais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Regressão , Fatores de Transcrição/genética
8.
PLoS One ; 7(3): e33844, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479456

RESUMO

Glioblastoma (GBM) and other malignant gliomas are aggressive primary neoplasms of the brain that exhibit notable refractivity to standard treatment regimens. Recent large-scale molecular profiling has revealed distinct disease subclasses within malignant gliomas whose defining genomic features highlight dysregulated molecular networks as potential targets for therapeutic development. The "proneural" designation represents the largest and most heterogeneous of these subclasses, and includes both a large fraction of GBMs along with most of their lower-grade astrocytic and oligodendroglial counterparts. The pathogenesis of proneural gliomas has been repeatedly associated with dysregulated PDGF signaling. Nevertheless, genomic amplification or activating mutations involving the PDGF receptor (PDGFRA) characterize only a subset of proneural GBMs, while the mechanisms driving dysregulated PDGF signaling and downstream oncogenic networks in remaining tumors are unclear. MicroRNAs (miRNAs) are a class of small, noncoding RNAs that regulate gene expression by binding loosely complimentary sequences in target mRNAs. The role of miRNA biology in numerous cancer variants is well established. In an analysis of miRNA involvement in the phenotypic expression and regulation of oncogenic PDGF signaling, we found that miR-34a is downregulated by PDGF pathway activation in vitro. Similarly, analysis of data from the Cancer Genome Atlas (TCGA) revealed that miR-34a expression is significantly lower in proneural gliomas compared to other tumor subtypes. Using primary GBM cells maintained under neurosphere conditions, we then demonstrated that miR-34a specifically affects growth of proneural glioma cells in vitro and in vivo. Further bioinformatic analysis identified PDGFRA as a direct target of miR-34a and this interaction was experimentally validated. Finally, we found that PDGF-driven miR-34a repression is unlikely to operate solely through a p53-dependent mechanism. Taken together, our data support the existence of reciprocal negative feedback regulation involving miR-34 and PDGFRA expression in proneural gliomas and, as such, identify a subtype specific therapeutic potential for miR-34a.


Assuntos
Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , MicroRNAs/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Animais , Sequência de Bases , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Proliferação de Células , Glioma/metabolismo , Humanos , Camundongos , Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
9.
Neuromolecular Med ; 11(3): 208-22, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19731102

RESUMO

Gliomas are the most common form of primary brain tumors and are associated with a poor clinical outcome. The molecular mechanisms that contribute to gliomagenesis have become increasingly clear in recent years, yet much remains to be learned. This is particularly true for the role of microRNAs in gliomagenesis, as an appreciation for the significance of aberrant miRNA expression in human cancer has only emerged in the last 5 years. It is now evident that microRNAs regulate a wide variety of tumorigenic processes including cellular proliferation, differentiation, angiogenesis, invasion, and apoptosis. Here we review the current state of knowledge related to the role of microRNAs in glial tumor development. This is a rapidly evolving field and it is likely that we have only begun to appreciate the involvement of microRNAs in relation to glioma formation, and the therapeutic potential of microRNAs to improve outcome for glioma patients.


Assuntos
Glioma/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Diferenciação Celular/genética , Proliferação de Células , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Glioma/patologia , Glioma/terapia , Humanos , Hipóxia/genética , MicroRNAs/uso terapêutico , Invasividade Neoplásica/genética , Células-Tronco Neoplásicas/fisiologia , Neovascularização Patológica/genética
10.
Neuro Oncol ; 11(5): 477-87, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19139420

RESUMO

Development of model systems that recapitulate the molecular heterogeneity observed among glioblastoma multiforme (GBM) tumors will expedite the testing of targeted molecular therapeutic strategies for GBM treatment. In this study, we profiled DNA copy number and mRNA expression in 21 independent GBM tumor lines maintained as subcutaneous xenografts (GBMX), and compared GBMX molecular signatures to those observed in GBM clinical specimens derived from the Cancer Genome Atlas (TCGA). The predominant copy number signature in both tumor groups was defined by chromosome-7 gain/chromosome-10 loss, a poor-prognosis genetic signature. We also observed, at frequencies similar to that detected in TCGA GBM tumors, genomic amplification and overexpression of known GBM oncogenes, such as EGFR, MDM2, CDK6, and MYCN, and novel genes, including NUP107, SLC35E3, MMP1, MMP13, and DDX1. The transcriptional signature of GBMX tumors, which was stable over multiple subcutaneous passages, was defined by overexpression of genes involved in M phase, DNA replication, and chromosome organization (MRC) and was highly similar to the poor-prognosis mitosis and cell-cycle module (MCM) in GBM. Assessment of gene expression in TCGA-derived GBMs revealed overexpression of MRC cancer genes AURKB, BIRC5, CCNB1, CCNB2, CDC2, CDK2, and FOXM1, which form a transcriptional network important for G2/M progression and/or checkpoint activation. Our study supports propagation of GBM tumors as subcutaneous xenografts as a useful approach for sustaining key molecular characteristics of patient tumors, and highlights therapeutic opportunities conferred by this GBMX tumor panel for testing targeted therapeutic strategies for GBM treatment.


Assuntos
Neoplasias Encefálicas/genética , Dosagem de Genes , Glioblastoma/genética , RNA Mensageiro/análise , Animais , Proliferação de Células , Amplificação de Genes , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Transcrição Gênica , Transplante Heterólogo
11.
BMC Med ; 6: 14, 2008 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-18577219

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is an invariably fatal central nervous system tumor despite treatment with surgery, radiation, and chemotherapy. Further insights into the molecular and cellular mechanisms that drive GBM formation are required to improve patient outcome. MicroRNAs are emerging as important regulators of cellular differentiation and proliferation, and have been implicated in the etiology of a variety of cancers, yet the role of microRNAs in GBM remains poorly understood. In this study, we investigated the role of microRNAs in regulating the differentiation and proliferation of neural stem cells and glioblastoma-multiforme tumor cells. METHODS: We used quantitative RT-PCR to assess microRNA expression in high-grade astrocytomas and adult mouse neural stem cells. To assess the function of candidate microRNAs in high-grade astrocytomas, we transfected miR mimics to cultured-mouse neural stem cells, -mouse oligodendroglioma-derived stem cells, -human glioblastoma multiforme-derived stem cells and -glioblastoma multiforme cell lines. Cellular differentiation was assessed by immunostaining, and cellular proliferation was determined using fluorescence-activated cell sorting. RESULTS: Our studies revealed that expression levels of microRNA-124 and microRNA-137 were significantly decreased in anaplastic astrocytomas (World Health Organization grade III) and glioblastoma multiforme (World Health Organization grade IV) relative to non-neoplastic brain tissue (P < 0.01), and were increased 8- to 20-fold during differentiation of cultured mouse neural stem cells following growth factor withdrawal. Expression of microRNA-137 was increased 3- to 12-fold in glioblastoma multiforme cell lines U87 and U251 following inhibition of DNA methylation with 5-aza-2'-deoxycytidine (5-aza-dC). Transfection of microRNA-124 or microRNA-137 induced morphological changes and marker expressions consistent with neuronal differentiation in mouse neural stem cells, mouse oligodendroglioma-derived stem cells derived from S100 beta-v-erbB tumors and cluster of differentiation 133+ human glioblastoma multiforme-derived stem cells (SF6969). Transfection of microRNA-124 or microRNA-137 also induced G1 cell cycle arrest in U251 and SF6969 glioblastoma multiforme cells, which was associated with decreased expression of cyclin-dependent kinase 6 and phosphorylated retinoblastoma (pSer 807/811) proteins. CONCLUSION: microRNA-124 and microRNA-137 induce differentiation of adult mouse neural stem cells, mouse oligodendroglioma-derived stem cells and human glioblastoma multiforme-derived stem cells and induce glioblastoma multiforme cell cycle arrest. These results suggest that targeted delivery of microRNA-124 and/or microRNA-137 to glioblastoma multiforme tumor cells may be therapeutically efficacious for the treatment of this disease.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/patologia , MicroRNAs/metabolismo , Neurônios/patologia , Oligodendroglioma/genética , Oligodendroglioma/patologia , Animais , Ciclo Celular/genética , Diferenciação Celular/genética , Regulação para Baixo , Expressão Gênica , Humanos , Camundongos , Células-Tronco Neoplásicas , Transfecção , Células Tumorais Cultivadas , Regulação para Cima
12.
J Biol Chem ; 280(14): 13304-14, 2005 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15632195

RESUMO

The 90-kDa ribosomal S6 kinases (RSK1-3) are important mediators of growth factor stimulation of cellular proliferation, survival, and differentiation and are activated via coordinated phosphorylation by ERK and 3-phosphoinositide-dependent protein kinase-1 (PDK1). Here we performed the functional characterization of a predicted new human RSK homologue, RSK4. We showed that RSK4 is a predominantly cytosolic protein with very low expression and several characteristics of the RSK family kinases, including the presence of two functional kinase domains and a C-terminal docking site for ERK. Surprisingly, however, in all cell types analyzed, endogenous RSK4 was maximally (constitutively) activated under serum-starved conditions where other RSKs are inactive due to their requirement for growth factor stimulation. Constitutive activation appeared to result from constitutive phosphorylation of Ser232, Ser372, and Ser389, and the low basal ERK activity in serum-starved cells appeared to be sufficient for induction of approximately 50% of the constitutive RSK4 activity. Finally experiments in mouse embryonic stem cells with targeted deletion of the PDK1 gene suggested that PDK1 was not required for phosphorylation of Ser232, a key regulatory site in the activation loop of the N-terminal kinase domain, that in other RSKs is phosphorylated by PDK1. The unusual regulation and growth factor-independent kinase activity indicate that RSK4 is functionally distinct from other RSKs and may help explain recent findings suggesting that RSK4 can participate in non-growth factor signaling as for instance p53-induced growth arrest.


Assuntos
Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Sequência de Aminoácidos , Animais , Butadienos/metabolismo , Linhagem Celular , Meios de Cultura Livres de Soro , Ativação Enzimática , Inibidores Enzimáticos/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Nitrilas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Alinhamento de Sequência , Serina/metabolismo , Distribuição Tecidual
13.
Biochem Biophys Res Commun ; 321(4): 823-7, 2004 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-15358101

RESUMO

Phosphoinositide-dependent kinase-1 (PDK1) mediates activation of many AGC kinases by docking onto a phosphorylated hydrophobic motif located C-terminal of the catalytic domain in the AGC kinase. The interaction shifts PDK1 into a conformation with increased catalytic activity and leads to autophosphorylation of PDK1. We demonstrate here that addition of a hydrophobic motif peptide increases the catalytic activity of PDK1 orthologues from Homo sapiens, Aplysia californica, Arabidopsis thaliana, Schizosaccharomyces pombe (ksg1), and Saccharomyces cerevisiae (Pkh1 and Pkh2) 2- to 12-fold. Furthermore, the hydrophobic motif peptide increases autophosphorylation of PDK1 from Homo sapiens, S. pombe, and S. cerevisiae (Phk2). Our results suggest that PDK1 interaction and activation by the hydrophobic motif of AGC kinases is a central mechanism in PDK1 function, which is conserved during eukaryotic evolution.


Assuntos
Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Aplysia/enzimologia , Aplysia/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Domínio Catalítico , Ativação Enzimática , Humanos , Interações Hidrofóbicas e Hidrofílicas , Técnicas In Vitro , Dados de Sequência Molecular , Filogenia , Conformação Proteica , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética
14.
Hum Genet ; 113(3): 195-201, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12811541

RESUMO

The FATE gene maps to Xq28 where one case of a translocation breakpoint has been found in an infertile man. Moreover, the FATE promoter contains a putative SF-1-binding site, and FATE has been proposed as representing a target gene of SF-1 in testicular development or germ cell differentiation. This study presents a complete mutational screening of the FATE gene in a random group of 144 infertile males. Four polymorphisms and two mutations were found. Three of the polymorphisms, viz., 741C-->T, 905A-->C, and 3985C-->T, occurred in exon 5 and intron 2 and did not alter the deduced polypeptide. One polymorphism resulted in the conservative amino acid exchange, A10 V, in 16.0% of the patients. This substitution occurred with similar frequencies in the control groups, indicating that the mutation does not affect fertility in men or women. The two mutations caused the non-conservative amino acid substitutions S125R (patient 1) and I34T (patient 2). A family study (patient 1) revealed, however, that S125R was inherited and that a fertile male family member carried the mutation. Patient 2 did not have relevant family members who could be examined. Thus, this study has shown that only 1.4% of infertile men have mutations in the FATE gene, and that some of these mutations do not singly cause infertility. Hence, FATE may not play an important role in the disease-state of infertile men attending fertility clinics. However, FATE mutations cannot be excluded as being a contributing factor in some cases of male infertility.


Assuntos
Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Infertilidade Masculina/genética , Mutação , Polimorfismo Genético , Fatores de Transcrição/genética , Cromossomo X/genética , Adulto , Alanina/genética , Sequência de Aminoácidos , Animais , Arginina/genética , Cisteína/genética , Primers do DNA , Éxons/genética , Humanos , Íntrons/genética , Cariotipagem , Masculino , Dados de Sequência Molecular , Linhagem , Reação em Cadeia da Polimerase , Serina/genética , Treonina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...